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Executive Summary 
The Athena project (www.athena-mobility.org) has worked to investigate the relationship between 
the Dallas-Fort Worth Airport (DFW) and the greater Dallas area in order to better understand and 
therefore better inform future decision-making regarding the critical infrastructure that influence 
mobility between the airport and the city. Through this work, infrastructure related to curbside 
pickup and drop-off, parking, public transit, and the road network congestion were identified as 
critical to the operation of the DFW transportation hub. The infrastructure analysis and expansion 
aspect of the Athena project is focused on the restructuring of the CTA curb as a hierarchical curb 
and the building or repurposing of parking infrastructure as the interplay between these two areas. 

Many sources of uncertainty exist that may impact future airport and transportation hub operations, 
such as passenger volume growth, population demographic changes over time, electric vehicle 
(EV) adoption rates, and autonomous vehicle (AV) adoption rates. Due to these sources of 
uncertainty, we have selected for our research a modeling framework that can capture various 
types of uncertainty and hedge against those uncertainties in the optimization process. We analyze 
road network and curb congestion, the rise of transportation networking companies, trends in 
parking usage, existing policies around this infrastructure, airport revenue streams, and other 
contributing factors to enable infrastructure decision making with less uncertainty.  

To accomplish this wholistic analysis, we have developed a novel multi-stage, multi-period 
stochastic optimization model which considers the airport’s decisions from 2025-2045 under 
different possible future macro trajectories and day-to-day variations in operational conditions 
captured as “annual representation of operations” scenarios with respective probabilities. This 
model has also been designed to leverage the outputs of various efforts under the Athena project to 
create a combined decision framework for infrastructure decisions. These various efforts include 
the route optimization model, the ASPIRES simulation, the mode choice model, and the SUMO 
traffic simulation. Our computational experiments of this system at scale have resulted in a 
working version of our infrastructure model which enables the explicit representation and 
consideration of various sources of uncertainty in the decision process to enable robust, flexible 
decision-making. 

This model has been effectively run on NREL’s HPC system, Eagle, with large numbers of 
stochastic scenarios and shows promise as a scalable tool for robust consideration of uncertainties 
in airport planning. We have tested our model using 30,240 operational circumstances in total, 
resulting in a problem with more 200 million variables. This model was solved in several different 
configurations, and a workflow to simulate the performance of the infrastructure model results was 
developed and deployed.  

In general, our results indicate that a combination of remote parking, remote curb infrastructure, 
and dynamic pricing can generate revenue, reduce emissions, accommodate emerging technologies 
such as AVs and EVs, and manage airport passenger growth over time. We note the success of the 
proposed strategy depends on the data collection and forecasting abilities of DFW. We have also 
seen that the AV adoption by TNCs might necessitate larger amounts of remote curb. The results 
of this work inform strategies for airport infrastructure decision making, as well as demonstrate the 
value of an adaptable model, but also indicate that there are avenues remaining where further 
research would be of value. 

http://www.athena-mobility.org/
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1 Airport Critical Infrastructure 
The Athena project (www.athena-mobility.org) has worked to characterize a conceptual 
boundary between the Dallas-Fort Worth Airport (DFW) and the greater Dallas area so the 
critical infrastructure that influences mobility between the airport and the city can be studied. 
Through literature review, firsthand visits, discussions with the planning teams of DFW, 
connections with Athena technical advisors from major U.S. ports, and conversations with 
additional project stakeholders, infrastructure related to curbside pickup and drop-off, parking, 
public transit, and the road network congestion were identified as critical infrastructure 
regarding the characterization of this boundary (Ashford et al. 2011). 

The infrastructure analysis and expansion aspect of the Athena project is focused on the 
restructuring of the CTA curb as a hierarchical curb; and the building or repurposing of parking 
infrastructure as the interplay between these two areas is of immediate and future interest. 
Studying these two areas necessitates understanding congestion on the DFW road network and 
understanding if and how the rise in transportation networking companies (TNC) and shared 
mobility use by passengers has led to curb congestion at the terminals, a reduction in parking 
use, and road network congestion. While parking has been a major source of revenue for airports 
in the past, it has an uncertain future. In contrast, curb access appears to have new potential to 
generate revenue. Understanding the future use and viability of airport parking as well as 
opportunities to expand and operate curb space are important questions this research aims to 
investigate.  

1.1 Curb Front Infrastructure 
Our research shows that U.S. airports are increasingly concerned with how investments in and 
policies for curb infrastructure can help alleviate current congestion issues and provide new 
revenue. The curb and the road network that enables access to the curb is an area of airport 
operations sensitive to mobility trend shifts. The probable rise of autonomous vehicle (AV) 
technology over the next 20 years represents another potential mobility trend shift which could 
disrupt curb operations. Therefore, careful consideration of curb related infrastructure 
investments is critical to understanding a path to more efficient operations and increased energy 
efficiency at U.S. airports. 

In this research, we are considering curb infrastructure investments of two types. The first type is 
the conversion of CTA parking spaces to curb space for passenger drop-off/pickups near the 
existing CTA curb to expand the terminal curb capacity. The second type of curb infrastructure 
investment we consider is the building of remote curb locations on the DFW campus with road 
and shuttle infrastructure investments that move passengers to and from the remote curb, 
terminals, and cell phone parking to enable vehicle staging at the remote curb which are picking 
up passengers who have not yet arrived at the remote curb.  

1.2 Parking Infrastructure 
While on the decline overall, conventional parking infrastructure will still be needed for some 
time (Henao, 2018). Given increases in shared mobility and emergence of AV technologies, 
parking at airports may require changes in order to maximize the efficiency and usage of 
infrastructure while decreasing energy costs and increasing revenue. A key consideration is 

http://www.athena-mobility.org/
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whether additional traditional parking would be a necessary component of long-term 
infrastructure expansion plans. In this research, we consider parking infrastructure investments in 
new remote parking spots at the north and south ends of the DFW campus. However, we also 
allow for the possibility of reduction in parking to increase available pickup/drop-off curb space 
near the CTA, as mentioned in the previous section. 

1.3 Operational Policies 
Operational policies for management of critical infrastructure represent another element to 
consider in the analysis of infrastructure investment timelines. Operational policies have shown 
promise in reducing congestion and increasing revenue. For example, Portland Airport (PDX) 
and Los Angeles Airport (LAX) have taken the view that the curb at terminals is a finite resource 
and have investigated new pricing schemes to reflect the scarcity of that resource. This new 
policy tool could assist in management of the added congestion from TNC services. 
Understanding the implications of such policies like these is essential to the planning research, 
especially because TNC service policies are being actively considered by the ports on the Athena 
technical advisory committee. Understanding the joint effects that operational policies, 
infrastructure improvements, and/or the increasing use of shared mobility have on goals such as 
reducing congestion, energy consumption, and emissions is necessary for choosing between 
various management strategies. 

The primary policy of interest in this research is new pricing schemes for terminal curb front 
access and various parking products. These policies are aimed at motivating the use of a remote 
curb area, where passengers would be shuttled to the terminal areas in high occupancy shuttles, 
while increasing airport revenue. The hypothesized effects of such a policy would be a reduction 
in terminal curb front congestion due to the transfer of passenger drop volume to the remote 
curb.  

1.4 Autonomous Vehicles 
Autonomous Vehicles (AV) are a potentially disruptive technology of significant interest to 
DFW airport and U.S. Department of Energy (DOE) whose impacts are essential to explore. The 
Athena project considers different possible AV scenarios while investigating infrastructure 
investment questions. AV behavior at the curb is forecasted to be similar to TNC behavior but 
with the potential for increased efficiency at the curb due to inter-vehicle coordination. AV 
parking behavior will likely be similar to personal vehicle behavior, except for self-parking AVs 
that can drop passengers off at the curb and park in AV parking areas. AV parking areas provide 
more efficient use of parking space since they allow cars to park extremely close to one another 
as there are no passengers needing to get out of the car.  

Since AVs can execute tasks in different orders than human-driven cars, we can expect to see 
different patterns of traffic on the airport road network especially as larger percentages of cars on 
the network are AVs. For example, self-parking AVs can park after passenger drop offs or self-
charge. During their parking dwell time, AVs can drive themselves to a charging hub when one 
is available, reducing the needed number of chargers. Finally, AVs can drive themselves home 
and park for free, which could impact parking utilization in the future. Hence, part of this 
research thrust is constructing AV scenarios that capture changes which might come as AV 
adoption increases.  
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1.5 Summary of Potential Infrastructure Changes 
In summary, the curb and parking infrastructure are critical areas of study for the transportation 
interface between the airport and the surrounding metropolitan region. Regarding curb related 
infrastructure investments, the Athena project is examining converting existing parking to curb 
space at terminals and building remote curb locations on the DFW campus alongside potential 
policy changes. These options and the effects of congestion and parking pricing policies, which 
seek to balance and reduce curb congestion by promoting use of remote curb infrastructure, as 
well as increase airport revenue, are being researched with respect to the fundamental question of 
whether more parking should be built at DFW. 

2 Modeling Approach 
A principal goal of the Athena project is to enable infrastructure decision making with less 
uncertainty. There are many sources of uncertainty that relate to future airport operations, which 
have meaningful implications regarding needed infrastructure for efficient future operations. 
Some examples include passenger volume growth, population demographic changes over time, 
EV adoption rates, autonomous vehicle adoption rates, new emergent technologies which change 
revenue streams, changing weather patterns, government policy changes, and unintended 
consequences of operational policy changes. Therefore, we have chosen a modeling framework 
that has the ability to capture various types of uncertainty and hedge against them in the 
optimization process.  

In particular, we have developed a multi-stage, multi-period stochastic optimization model which 
considers a horizon from 2025-2045 of decisions under different possible future macro 
trajectories and day to day variations in operational conditions captured as scenarios with 
respective probabilities. This modeling approach enables the explicit representation and 
consideration of various sources of uncertainty in the decision process to enable robust, flexible 
decision-making. Multi-stage-scenario-based-stochastic models use non-anticipatory constraints 
to bound the information available and represent the uncertainties present to the decision maker 
at various decision points (Rockafellar, 2001). This approach has proven to be a powerful 
modeling framework for planning-based problems in a variety of fields (Birge et al, 2011; 
Munoz et al, 2015; Sun et al, 2015).  

For this application, we have chosen to construct a two-stage model, where the first stage 
decisions are infrastructure construction decisions, the second stage decisions represent 
operational policy decisions at the day to hourly level (e.g., curb congestion pricing), and real 
time recourse decisions both of which depend on the scenario. Figure 1 shows a schematic of a 
two-stage-scenario-based-stochastic model with only two scenarios. Here, the first stage decision 
𝑥𝑥 is made such that it must perform as well as possible across all possible future scenarios with 
given probabilities of occurrence, and the second stage operational decisions 𝑦𝑦1 and 𝑦𝑦2 are made 
with full knowledge and must perform well in their respective scenarios using the decisions 
made in 𝑥𝑥.  

As depicted in Figure 1, using a two-stage model allows us to capture both long- and short-term 
uncertainties, by having a variety of scenarios with different long and short-term features. Long-
term uncertainties characterize uncertainty in long-term forecasts of macro trends such as 
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passenger demand growth. Short-term uncertainties represent stochastic quantities like the 
breakdown of mode choices to and from the airport at a particular time of day.  

 
Figure 1: Illustration of the 2-stage modeling approach with two scenarios. 

Figure 2A is an example of three system-wide enplanement forecasts from the FAA 
Aerospace Forecast Report for 2019-2039, and Figure 2B is an example of a possible break 
down of mode choices for a given hour of operations. Using scenarios that represent short- and 
long-term uncertainties, we aim to construct a statistical representation of operational days at 
DFW over a 21 year period, which will inform the optimization model how infrastructure 
requirements of the airport might evolve overtime. 

 
Figure 2A: FAA Aerospace Forecast Fiscal Years 2019-2039. 
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Figure 2B: Sample mode choices percentages of the DFW passenger population. 

In Table 1, we summarize the infrastructure decisions being modeled, operational polices being 
considered, and uncertainties we plan to represent through our suite of scenarios. We also outline 
some areas for future research.  

Table 1: Details modeled regarding infrastructure decisions, operations policies, and 
uncertainties. 

Model Elements Planned Scope Potential Future Work Scope 

Infrastructure Decisions Terminal Curb Front Parking 
Conversion to Curb 
Remote Curb Front Surface 
Area Expansion 
Remote Curb Front Shuttle 
Fleet and Vehicle Staging 
Areas 
New Remote Parking Capacity 

Road Infrastructure Improvements 
Dedicated AV Road network 

Operational Policies Terminal Curb Congestion 
Pricing 
Parking Pricing  

HOV Curb 
Curb Rebalancing  
Terminal Real-Time Data App 

Long Term Uncertainties Passenger Volume 
AV Adoption 
EV and Emissions Related 
Technology Adoption 

Population Demographics 
Changes 
Future Model Choice Trends 

Short Term Uncertainties Mode Choice Response to 
Congestion and Parking 
Pricing 
Daily Passenger Volumes at 
Different Parking and Remote 
Curb Locations 
Parking Lot Occupancy Levels 

Traffic Accidents 
Extreme Weather Events 
Surrogate Model Uncertainty 
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A noteworthy advantage of using a multi-stage-scenario-based-stochastic model is the optimization 
modeling software and theoretical framework that exists around solving such models. Modern 
optimization leverages flexible modeling languages which allow complex sets of equations to be 
expressed abstractly in code and easily coupled with optimization algorithms appropriate for the 
equations expressed. Such modeling languages support sparsity-aware expressions of multi-stage 
multi-scenario models, enabling the modeling of long-term decisions under long-term uncertain 
future horizons (Watson et al, 2012; Huchette et al, 2014; Dunning et al, 2017). 

These models often have millions of variables and have, in the past, been unsolvable. However, the 
sparsity-aware expression of such models has enabled the development of open-source 
implementations of abstract algorithms which use the sparsity structure to produce scalable 
algorithms capable of producing sub-optimal solutions that are very close to optimal solutions in a 
reasonable amount of time. One such algorithm is progressive hedging algorithm (Rockafellar et al, 
1991). For this research we are leveraging the PySP and mpi-sppy frameworks (Watson et al, 2012) 
in the open-source modeling language Pyomo (Hart et al, 2011; Hart et al. 2017), which provides a 
scalable framework for constructing and solving multi-stage multi-scenario models using 
progressive hedging. Figure 3, below, provides a schematic of how this decomposition is done. 

These multi-stage algebraic modeling approaches require that the problem is expressed using a 
set of algebraic equations. Transportation problems often cannot easily be expressed as a set of 
equations, if at all. This is because transportation networks are composed of human agents which 
do not follow predefined laws of physics. The suite of DFW simulations constructed in various 
parts of the Athena project are calibrated using large amounts of data and are coupled with HPC 
capabilities. These simulations offer a chance to describe the behavior of transportation systems 
by using HPC capabilities to collect large amounts of data from these simulations that can be 
used to derive data driven representations of systems. A key feature of our approach is to use 
surrogate modeling techniques to leverage the results from many ‘what if’ scenario simulations 
run in parallel on HPC. Leveraging the data generated from the HPC runs, we have built 
surrogate models that capture these relationships in appropriate functional forms which can then 
be embedded in multi-stage algebraic model (Safta et al, 2014). 

 

Figure 3: Illustration of how a three-stage scenario tree with four leaf nodes can be decomposed 
into four separate scenarios, which in progressive hedging are iteratively solved in parallel to 

come up with a solution to the original scenario tree. 
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3 Model Scenario Structure 
The aim of the scenarios used to construct our multi-stage infrastructure model is that they 
represent airport operations and some of the most important associated uncertainties from 2025-
2045, such that infrastructure decisions are informed by information contained in the scenario 
set.  

To explain how our scenario set is structured to achieve these goals, we will use the term “annual 
representation of operations” (ARO). An ARO consists of 16 scenarios, each representing 
different hour-long periods of operations throughout the year. Each of the 16 scenarios that make 
up an ARO is described by a tuple of this form (season, day of week, time of day). In our work, 
season is either {Fall, Winter, Spring, or Summer}. Day of week is either {weekend or 
weekday}, and time of day is either {on-peak or off-peak}. The 16 scenarios in an ARO differ in 
the overall passenger volume, mode preferences, behavior of the passenger volume, and the 
breakdown of physical locations on the airport the different mode choice volumes visit (i.e., 
north remote curb vs. south remote curb). 

If we have a single ARO for each year, then our model determines infrastructure decisions for 21 
years against 21 AROs, one for each year. This means that the infrastructure decisions would be 
made against 21*16 = 336 operational scenarios that collectively represent one realization of the 
operational circumstances which might arise over 21 years of airport operations. However, there 
are stochastic variations in the hours that each ARO represents, therefore building infrastructure 
against a single ARO for each year is likely to be overfit to that 21-year realization. 
Alternatively, we can expect to make infrastructure decisions which are more suited to handle 
the day-to-day variations in airport operations if our model considers multiple AROs for each 
year. Thus, we consider 10 AROs for each year.  

By considering multiple AROs for each year we can represent the day-to-day variations in 
overall passenger volume, mode preferences and behavior of the passenger volume, and the 
physical locations on the airport the different mode choice volumes visit. To capture longer term 
trends such as demand growth rates and changes in emissions due to congestion as a result of 
new technologies such as EVs, we pair each ARO with a demand and emissions scenario. In 
order to capture a range of possibilities, we use a high, medium, and low case for demand and 
emissions. This gives 9 (demand, emission) macro trajectories that define the parameters in a 
scenario which characterize overall passenger volume and emissions costs. When an ARO is 
paired with one of these 9 macro trajectories, we will call it a ‘trajectory specific annual 
representation of operations’ (TSARO). When considering all combinations of trajectories and 
AROs, we have 90 TSAROs for each year, giving us 90 possible ways 21 years of operations 
could unfold at DFW. This allows the model to make a single set of infrastructure decisions 
hedging against all 90 TSAROs for each year by using them to construct a sample average 
approximation of the expected operational cost over the horizon considered. In figure 4, we have 
drawn a schematic of the TSARO structure for a particular year. We note that when a model is 
solved against 90 TSAROs for each year in the horizon it is determining infrastructure decisions 
that consider 21*16*90 = 30,240 operational circumstances. In addition to the standard 9 macro 
trajectories, we also consider possible AV trajectories that are used to construct some specific 
case studies characterizing the effects AVs might have on road network congestion. 
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Figure 4: Schematic of how each year of the modeled horizon is represented by many trajectory-

specific annual operational representations. 

4 Single Infrastructure Model Scenario Structure 
The full infrastructure model is made up of many different scenario specific instances of a 
deterministic model which are linked by non-anticaptivity constraints to form a two-stage 
stochastic model. It is illustrative to discuss the structure of a deterministic or single scenario 
version of the model. To help illustrate the structure of a deterministic instance of the model, we 
have provided a graph representation of the model to show how different decisions, constraint 
sets, or sub models depend on one another and influences the model’s objective function. There 
are three primary decisions that are made in the model:  

1. The infrastructure built of each type in each year. 
2. The prices for the different parking products and terminal curb access. 
3. The number of buses in service to move people between the terminals and the parking 

lots and remote curbs. 
The infrastructure decisions influence the number of buses and the flexibility of prices for 
parking and curb access. Additionally, they influence which mode choices are available to 
travelers, which bus balance constraints are active, bounds on parking constraints, and the shape 
of congestion functions. The active bus decisions are plugged into the bus balance constraints 
which ensure passengers are moved efficiently between the terminals and the remote curbs or 
remote parking areas. 
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Figure 5: Schematic showing dependencies between different  decisions, constraints, and 

submodels. 

The parking and terminal curb access prices determine the volume of passengers using each 
mode. Those volumes determine the revenue and are plugged into the bus balance constraints, 
the parking balance constraints, and the congestion functions. The bus balance constraints, 
parking balance constraints, and congestion functions all track the levels of service and if 
violated cause customer service penalties. The congestion functions all excess emissions due to 
congestion to be calculated. The customer service penalties and emissions are both converted to 
dollars via value of time and carbon cost coefficients and summed together with revenue and 
infrastructure costs to create the objective function value.  

5 Athena Model Integration 
In order to leverage the various efforts from the Athena project into a combined decision 
framework for infrastructure decisions, we have designed the multi-stage stochastic planning 
model so that it uses outputs from the mode choice model (Section 5.1), traffic microsimulation 
(Section 5.2), shuttle route optimization model (Section 5.3), and event-driven shuttle simulation 
(Section 5.4) as depicted in Figure 5 and discussed in detail in the following subsections. An 
important feature of our model is its ability to understand how much remote curb should be built 
in the future. It is critical that the remote curb have the ability to move people to and from the 
terminals efficiently.  

Towards this aim, we have used the Athena bus optimization results to characterize the routes 
and the number of shuttles needed in operation and in reserve to achieve certain levels of service 
for passengers. We have also used the Athena ASPIRES simulation framework to understand the 
battery sizes of buses and the type and number of chargers needed to support a given number 
buses. By using the route optimization work and the ASPIRES simulations to inform the 
necessary constraints and parameters in the infrastructure model, we have confidence that our 
model prescribes the needed bus infrastructure to support different remote curb configurations.  
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Figure 6: Schematic of the different Athena models which feed data into the infrastructure 

planning model. 

Another important feature of our model is the use of pricing schemes to influence the mode 
choices of passengers arriving and departing from the airport. The aim of this is twofold; first, it 
can help the airport monetize its curb space, and second, it can reduce network congestion. In 
order to capture how mode choice volumes would be changed by different congestion and 
parking prices, we have leveraged the mode choice modeling framework to construct mappings 
from congestion and parking prices to mode choice volumes that can be embedded into the 
infrastructure model. This allows our model to use different prices for congestion and parking to 
influence the volumes of the different passenger modes in an effort generate revenue and manage 
congestion. 

In order to ensure our model has an appropriate representation of congestion, we are leveraging 
the Athena DFW SUMO traffic simulation framework. By using this work, we are able to run 
simulations of the DFW terminal area and synthetic remote curbs to collect congestion data that 
depends on the volume of incoming cars and the available infrastructure for cars to utilize. This 
enables us to build simulation-data driven congestion functions that are embedded into 
infrastructure model which capture the changes in congestion when mode choices of passengers 
are shifted by congestion and parking prices. In the following subsections, we describe these 
different Athena modeling components in more detail. In Table 2, we provide a summary of the 
relationships between models.  
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Table 2: Summary of relationships between various Athena Models and the Athena Infrastructure 
Model. 

Athena Model Relationship to Infrastructure Model 

Mode Choice Model Provides lookup tables, which depend on the 
year, season, and time of week, that map 
congestion and parking price combinations to 
mode choice volumes. These lookup tables are 
encoded into the infrastructure model using 
techniques with binary decision variables. It allows 
the model to have a representation of passengers’ 
reactions to prices. 

SUMO Model of DFW Road Network Provides a piecewise linear representation of 
passenger delay due to congestion on the DFW 
road network that is embedded into the 
infrastructure model. This allows the model to 
have a low order representation of delay in the 
DFW toll area as a result of passenger mode 
choices. 

SUMO Model of Remote Curb Provides a piecewise linear representation of 
passenger delay due to congestion at a generic 
remote curb of different sizes that is embedded 
into the infrastructure model. This allows the 
model to have a low order representation of delay 
at a remote curb as a result of passenger mode 
choices, and the amount of remote curb built. 

Bus Route Optimization Model Informs the routes, the number of loops a bus can 
make per hour while servicing a remote curb, the 
bus size servicing a remote curb. 

ASPIRES discrete-event simulation Informs the ratio of total bus fleet size needed to 
have a certain number of buses in service at a 
remote curb. Informs the number of chargers 
needed to keep a certain number of electric buses 
running at a remote curb. Informs the battery size 
needed for EV buses servicing a remote curb. 
These ratios are used in the construction of bus 
related remote curb constraints. 

5.1 Athena Mode Choice Dataset 
The demand profile, i.e., volume of passengers going in and out of the airport by different 
transportation modes, is an important input for the infrastructure planning model. There are, in 
general, two key elements to consider for creating that demand profile: (1) the volume and the 
characteristics of the passengers that go in and out of the airport and (2) the access and egress 
mode choice decision mechanisms of these passengers. Starting from synthetic ticket generation, 
we produce a dataset on the synthetic passengers representing both the day-to-day volume 
change and the long-term passenger volume growth during the next 25 years.  

To support the individual level disaggregated access/egress mode choice decision analysis, the 
synthetic passenger dataset is structured to include the ticket information, air travel 
characteristics, and sociodemographic characteristics of the passengers. The access mode choice 
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decision patterns are examined by modeling these discrete choices using survey data provided by 
the North Central Texas Council of Governments (NCTCOG) and the planning and customer 
experience team of DFW. Besides the passenger volume variation captured by the synthetic 
passenger dataset generation process, the mode choice models describe how the passenger 
volume by different transportation modes evolve with the change of landside infrastructure and 
policy decisions, which is essential for the evaluation of the impact of the infrastructure 
scenarios. The mode choice models take the infrastructure specifications, the sociodemographic 
variables, and the travel characteristics of the passengers as inputs and predict the mode share for 
passengers in different market segments (residents or visitors, business or leisure, etc.). These 
processes are illustrated as Figure 7. 

 

Figure 7: Flow Chart for Generating Passenger Volume by Mode for Each Infrastructure Scenario 

We begin by generating synthetic ticket data for different days of the week in each month of 2019, 
leveraging load factor data and Airline Origin and Destination Survey data from the Bureau of 
Transportation Statistics (BTS). By matching certain flight ticket characteristics (time of the day, 
group size, etc.) with the same variables of the passenger survey data, we create the synthetic 
passenger dataset that includes both the travel characteristics and the sociodemographic 
characteristics, which facilitate the mode choice estimation and the prediction of passenger volume 
for each mode. The airline passenger volume for the future years is predicted based on the levels of 
growth rates approximated by the Aviation Activity Forecast report. The mode choice model takes 
the synthetic passenger data as input and generates mode share data for each infrastructure policy 
scenario with the consideration of uncertainty captured by the variance of the coefficient estimates. 
This mode share data for each infrastructure scenario forms a lookup table that allows the 
infrastructure model to evaluate its impact on congestion, energy consumption, emissions, and 
airport revenue. The subsections of this chapter aim to illustrate each of these steps and document 
the details of data input, data assumption, and modeling decision, etc.  
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5.1.1 Synthetic Ticket Generator 
The purpose of the synthetic ticket generator is to approximate the volume and characteristics of 
the airport passengers that depart from and arrive at DFW during different days of the week in 
different months of the year. As the core of the model, a Monte Carlo Simulation approach is 
taken to randomly sample tickets from a collection of different publicly available datasets 
(Figure 8). Based on the detailed information on the 700,000 departure and arrival flights of 
DFW for the year of 2019, in combination with the load factor distribution data for DFW airport 
according to the Bureau of Transportation Statistics (BTS)1, we are able to generate the 
approximated air travel demand at DFW grouped by connecting airports and the operating 
airlines. Given the approximated air travel demand distribution, tickets are randomly sampled 
from BTS’s Airline Origin and Destination Survey, also known as DB1B data, which is a 10% 
sample of airline tickets from reporting carriers collected by the Office of Airline Information of 
BTS2.  

As shown by Figure 8, the synthetic tickets information includes the origins and destinations 
airports of the flights, the flight information such as the fare classes, and the aircrafts. The most 
important variables generated for the next steps include the trip type (OD or connector), the trip 
purpose (business or nonbusiness), group size, and the time of the day. These variables enable 
the later simulation on travelers’ spatial (e.g., from a home location to a terminal) and temporal 
distributions (time of the day) around DFW, as well as their travel behaviors (e.g., mode choice). 
For the year 2019, 84 sets of synthetic tickets are generated for both the arriving and departing 
passengers for each of the seven days of the week in each of the 12 months. 

 
Figure 8. Outlines of Inputs and Outputs of the Synthetic Ticket Generator 

 
 
1 Bureau of Transportation Statistics (BTS). Load Factor (passenger-miles as a proportion of available seat-miles in 
percent (%)) (All carriers – All airports). Available at https://www.transtats.bts.gov/Data_Elements.aspx?Data=5.  
2 Bureau of Transportation Statistics (BTS). Data Profile: Airline Origin and Destination Survey (DB1B). Available 
at https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=125.  

https://www.transtats.bts.gov/Data_Elements.aspx?Data=5
https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=125
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5.1.2 Passenger Arrival & Departure Distribution  
The passenger arrival/departure time distributions for access and egress trips are respectively 
approximated based on the passengers’ airport dwell time captured by a curbside survey 
conducted by the Athena team in collaboration with the DFW customer experience team. By 
approaching passengers at the curb and asking the respondents to provide the departure and 
arrival time of their flights, we obtained the distributions of the airport dwell time for both the 
arrival and departing passengers, as shown by Figure 9. 

 
Figure 9. Airport Dwell Time for Arrival and Departing Passengers 

For each ticket in the synthetic ticket dataset, a dwell time is generated by randomly sampling from 
the observed dwell time distributions; and by shifting from the actual flight arrival and departure 
time, we can estimate the time when passengers arrive at the airport in preparation for departure 
(access trips) and the time when passengers leave the airport after landing (egress trips).  

 
Figure 10. Access Passenger & Traffic of One Thursday in September 

The blue line in Figure 10 illustrates the number of passengers departing from DFW in each hour 
during a Thursday in September, and by shifting from the departure time, the number of 
passengers that get to the airport in preparation for departure in each hour is shown as the green 



 

15 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

plot. Translating the number of passengers to the number of vehicles getting into the airport, we 
get the passenger access traffic (the red plot), which is generally consistent with the traffic 
volume produced by departing passengers according to the toll plaza records (the orange plot).  

5.1.3 From Synthetic Tickets to Synthetic Passengers  
After comparing the sample size and representativeness of multiple data sources, a survey 
conducted by North Central Texas Council of Governments (NCTCOG) was used to generate the 
sociodemographic characteristics and corresponding travel characteristics for each ticket in the 
synthetic ticket dataset. The survey was carried out from October 13, 2015 to February 3, 2016 
(Unison Consulting Inc., 2019). A stratified sampling strategy based on the distributions of 
airlines, destination zones, and time of day was applied to obtain a representative sample of 
passengers. Survey respondents were randomly approached by the interviewers while they were 
waiting at the airline gate and answered the questionnaire via electronic tablet. The respondents 
were asked to provide the following categories of information: socio-demographic 
characteristics, the information on the air travel such as the travel duration and trip purpose, and 
airport access trip information such as the origin, mode, and parking location (if applicable). 
After a meticulous review by the data collection agency, 84 percent (8,379) of the 9,942 survey 
responses qualified as usable in terms of containing necessary geospatial information. After 
further cleaning the survey data based on missing and incomplete information on mode choice 
and sociodemographic characteristics, 8,130 survey samples were retained for the purposes of 
this analysis. 

For each ticket, the sociodemographic information and travel characteristics are randomly 
sampled with replacement from a pool of respondents that have the same values for the 
following variables: (1) the time period of the day (AM peak, PM peak, or Off-peak time), (2) 
trip purpose (business or nonbusiness), (3) passenger type (resident or visitor), and (4) travel 
group size.  

To validate the representativeness of the NCTCOG sample, we compared the distribution of the 
travel time from the hotels in DFW region to DFW airport weighted by used capacity and the 
travel time of visitor travelers that stayed at hotels (Figure 11). At different quantile levels, the 
travel time from the hotels to the airport is at most 15 minutes longer than the travel time of 
visitors that stayed at hotels captured by the NCTCOG passenger survey, which is within the 
reasonable range considering that the airline passengers are more likely to stay in hotels near the 
airport. Hotel occupancy tax data was downloaded from the Texas Comptroller website for 2017-
2019. The original data included the name, address, and unit capacity of each establishment, as 
well as the total room receipts for the indicated fiscal period. Records were extracted for the 12-
county Athena study area, which was further cleaned and reduced by checking each unique 
record against information on popular lodging web sources (hotels.com, Google Maps, etc.), 
eliminating hotels with poor reviews and deemed unlikely to be within the choice set of the 
average visitor through DFW airport. Furthermore, the data was expanded to include standard 
room price information and several key amenities (e.g., 4/5 star-rating, notable conference 
facilities). Similarly, we compared the travel time distribution of survey respondents that came 
from their homes and the travel time distribution of residents in DFW region weighted by the 
TSZ level population and income (Figure 12). We conclude that the travel time distribution of 
the NCTCOG passenger survey sample is representative of the resident travelers and visitor 
travelers. 
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Figure 11: Access Travel Time Distribution Validation of Visitor Travelers That Stayed at Hotels. 

 
Figure 12: Access Travel Time Distribution Validation of Local Travelers. 

5.1.4 Synthetic Tickets and Passengers for Future Years  
DFW conducted an aviation activity forecast in 2016, which produced a report that lays out both 
the overall passenger volume growth prediction to the year 2035 and the hourly enplaned and 
deplaned passenger volume distribution prediction to the year 2045 for domestic and 
international trips respectively. Regression models were used to forecast the DFW origin and 
destination (O&D) passenger growth to the year 2035 by identifying predictive relationships 
between the number of O&D passengers and a few socioeconomic factors such as population, 
employment, personal income per capita, etc. It was predicted that for domestic O&D 
passengers, the growth rate is from 2015-2035 is 1.2%-1.9% with the consensus growth rate 
being 1.8%, and for international passengers, the growth rate is 2.1%-2.8% with the consensus 
growth rate being 2.6%.  

These predictions are made based on the following assumptions: (1) there will be no landside or 
airside constraints that limit the growth of the air traffic volume at DFW; (2) DFW continues to 
serve as an important hub for air travel in the United States and will be the only airport in the 
region that provides international service; (3) no major disruptions (such as terrorist attacks) will 
occur that will have a significant, prolonged negative effect on aviation activity nationwide; and 
(4) long-term increases in nationwide airport traffic will occur despite possible year-to-year 
variations. There is no base to doubt all of these assumptions with one possible exception of 
assumption (3), as the COVID-19 proves to play a major role in the decrease in air traffic for at 
least some length of time during the pandemic. However, it is still too early to tell whether this 
impact will be long-lasting. In lieu of the long-term air travel demand drop, the recent anecdotal 
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volume peaks of the thanksgiving holiday weekend during the pandemic possibly shows signs of 
opposing that downward trend. Therefore, we chose to use the predictions produced by the 
aviation activity forecast for the Athena project infrastructure model.  

5.1.5 DFW Passenger Access Mode Choice Modeling (NMNL)  
Understanding how airline travelers get to and from airports is critical for forecasting the future 
travel demand and in particular airport ground infrastructure needs. Consumers’ decision-making 
mechanisms for airport access mode is a complicated problem that cannot be captured by 
“generic” mode choice models due to the distinct nature of this decision. Compared to the 
regular urban travel mode choice, airport ground access depicts a much more diverse picture 
with novel services available. Using the passenger originating survey conducted by NCTCOG, 
the Athena team has developed several mode choice models from different perspectives. One 
paper was presented at the Transportation Research Board (TRB) Annual Meeting 2020 (Aziz 
et.al, 2020); another was accepted for presentation at TRB Annual Meeting 2021 and is currently 
being reviewed for publication (Ge et.al, 2021) based on these mode choice models. Both of 
these modeling efforts leverage the utility theory based discrete choice modeling (DCM), while 
the latter focuses on the joint modeling of mode choice and parking product choice in pursuit of 
a more accurate portrayal of the passengers’ decision process and more accurate estimation of 
value of travel time (VoT).  

Built on the basis of random utility maximization theory (RUM), DCM assumes individuals 
make decisions to maximize the utility specified as a linear weighted summation of the 
independent variables and an alternative specific constant (ASC) (Manski, 2001). For the 
modeling of airport access mode, the general form of utility specification is defined as  

𝑈𝑈𝑖𝑖𝑖𝑖 =  𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + θ1 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 +  θ2 ∗ 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 +  θ′𝑋𝑋𝑖𝑖  + 𝜀𝜀𝑖𝑖𝑖𝑖               (1) 

where 𝑈𝑈𝑖𝑖𝑖𝑖 refers to the utility of the alternative j of individual i, which is influenced by travel 
time (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖), travel cost (𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖), and other individuals’ sociodemographic characteristics and 
travel characteristics (𝑋𝑋𝑖𝑖). Time and cost are usually considered to be the most important 
variables for predicting mode choice, and the ratio of the coefficients of these two variables, 
defined as value of travel time (VoT), indicates the monetary amount an individual is willing to 
pay to save one unit of time (e.g., dollars per hour). VoT is essential for reliably estimating the 
impact of different infrastructure planning and demand management scenarios on the mode 
choice probabilities. For example, to predict how congestion fees in the airport area will 
influence access mode choice distribution, it is essential to estimate how much more people are 
willing to spend to arrive at the curb earlier. A nested multinomial logistic regression model 
(NMNL) that jointly models the mode choice decision and parking choice is proven to improve 
both the estimates of VoT and the predictive power (Ge et.al, 2021). Besides travel time and 
travel cost, the predictors of this model also include multiple variables on sociodemographic 
characteristic and travel characteristics.  

5.1.6 Sensitivity Analysis of the NMNL 
Infrastructure and policy scenarios influence individuals’ mode choice decisions usually by 
impacting the travel time and cost. To reflect the change of the infrastructure scenarios, it is 
important for the mode choice model to correctly represent the effect that travel time and cost 
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have on individuals’ decisions. To demonstrate this capability of the model we developed, we 
hereby present an illustrative example with a fictitious individual named Jane who is a middle-
aged Dallas-Fort Worth resident, stays 5 miles away from the airport, and has an upcoming 
leisure trip. Plugging Jane’s individual and trip characteristics in the model, we see that Jane has 
a higher probability of being dropped off or parking at the airport. If parking, Jane’s top 
preferences are either to park remotely or at the terminal. We then consider a set of scenarios 
where congestion fee is introduced in the DFW region and is increased up to a maximum of $80. 
The congestion fee is reflected in the travel cost for various modes, particularly the car modes. It 
can be observed from Figure 13 that with increasing congestion fee, Jane’s likelihood of getting 
dropped off or driving herself (e.g., parking) gradually decrease whereas her likelihood of taking 
transit increases exponentially. Even in parking choices, with increased congestion fee, Jane’s 
likelihood of choosing remote parking increases with increasing congestion fee, consistent with 
intuition (Figure 13).  

 

(a) Mode choice (b) Parking choice 

Figure 13. The mode choice and parking choice probability for Jane with the introduction of 
congestion fee in DFW area. (The solid lines represent the estimates of the probabilities and the 

shaded area represents the 95% confidence interval.) 
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(a) Mode choice (b) Parking choice 

Figure 14 The mode choice and parking choice probability for Jane when terminal parking price 
changes. (The solid lines represent the estimates of the probabilities, and the shaded area 

represents the 95% confidence interval.) 

Similarly, when terminal parking prices are increased, Jane’s likelihood of parking decreases 
whereas her likelihood of getting dropped off or taking a TNC improve. Unsurprisingly, with 
increase in cost of terminal parking, Jane’s likelihood of parking at the terminal decreases 
exponentially, coupled with a complementary increase in remote parking.  

5.1.7 Enhancement of NMNL Based on Future TNC Mode Share (NMNL+) 
As the NCTCOG survey was conducted during late 2015 and early 2016, the share structure 
looks different from the current, especially for Transportation Network Companies (TNC) which 
work in a young service. The NCTCOG survey shows that the mode share of TNC was a little 
over 5%, while a more recent survey conducted in 2018 by a DFW team showed TNC mode 
share reached about 23%. To facilitate infrastructure planning for future years, one important 
question to answer is whether TNC services had reached the peak of their market penetration in 
2018 to 23%. By combining the plaza data and the transaction data of different services, we 
estimated the monthly mode share for the airline passengers’ access trips from October 2013 to 
January 2020, as shown in Figure 15. Using a Bass Diffusion Model, we projected the adoption 
of TNC in the future years and learned that the peak of TNC mode share is about 25% if both the 
industry and the airport infrastructure/policy stay the same (Figure 16).  
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Figure 15: DFW Airport Mode Share 

 

Figure 16: TNC Adoption Projection Using Bass Diffusion Model 

Instead of applying the NMNL model directly to the synthetic passenger data described by 
Section 5.1.6 for the prediction of mode and parking choice, another step is carried out to 
augment the model to better represent future mode share structure which generates the 
augmented model NMNL+. The alternative specific constants (ACSs) were arbitrarily adjusted 
to arrive at a more realistic mode share for TNC, a practice that is quite common among agencies 
due to the difficulty of updating survey data frequently (Kisia, 2017).  

5.1.8 DFW Passenger Egress Mode Choice  
While a lot of effort is spent on developing a suitable mode choice model for the passengers’ 
access trips, egress trip mode choice gets limited attention due to the lack of data, a conundrum that 
is shared by other researchers (Gupta, 2008) and agencies (Gosling, 2008). The only piece of 
literature that looks at the egress mode choice model is by Reibach (2013), who estimated both 
access and egress mode choice models for a few airports in California using a survey conducted by 
Metropolitan Transportation Commission (MTC) in 2001-2002. Considering the regional 
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differences and the changes that have happened in transportation in the past two decades, the 
detailed egress mode choice models developed by Reibach do not bear enough value to be directly 
applied in the case of today’s DFW airport. However, the relationship between the access and 
egress trips illustrated in the paper shows a possible path to circumvent a detailed egress model, 
which is valuable when a rigorous modeling process is prevented by the lack of data. Ultimately, 
Reibach (2013) shows that the access mode is a predictor of egress trip, for example when some 
parked their car at the airport for a departure flight, the corresponding arrival flight trip will have 
egress mode of driving the parked car. Based on the access/egress mode share relationship listed in 
that article, we constructed the egress mode share for any given access mode for each market 
segment and the results for residents on business trips are shown by Table 3. A few assumptions 
were made, particularly surrounding the newly emerged mode TNC which was not in the picture 
when the MTC data was collected in 2002. When the access mode is drop off or transit for a Texas 
resident that is on a business trip, it is assumed that some of the percentage of taxi egress will be 
diverted to TNC due to cost considerations. When TNC is chosen as an access mode, in most 
cases, TNC will be chosen as the egress mode as well. Admittedly, though the research by Reibach 
offers some basis for those choices, these numbers are still chosen arbitrarily and should be 
replaced once more accurate data is available. For the synthetic tickets for arriving passengers, an 
access mode is first assigned based on the access mode choice model NMNL+, and then the egress 
mode is assigned based on this relationship between access and egress mode.  

Table 3: Relationship Between Access and Egress Mode Share (Approximated) 

Texas residents on 
business trips 

Egress mode  

Picked 
up  

Parked 
Car TNC Taxi  Airport 

shuttle  Transit  

Access 
Mode 

Dropped 
off  76% 0% 11% 8% 2% 3% 

Parking 0% 100% 0% 0% 0% 0% 

TNC 16% 0% 81% 0% 1% 2% 

Taxi  16% 0% 0% 81% 1% 2% 

Airport 
shuttle  30% 0% 0% 0% 70% 0% 

Transit  18% 0% 11% 0% 0% 71% 

5.1.9 Using NREL High-Performance Computer (HPC) Eagle for Mode Choice 
Datasets Generation 

The processes listed in Figure 7, from synthetic tickets, to generating synthetic passengers, to 
leveraging model choice models, to the final product of passenger volume data for each mode, 
are run for multiple iterations to cover the variations due to time of the day, day of the week, 
month of the year, and different infrastructure pricing scenarios. For each of these scenarios, 
multiple repetitions (10+) are generated to reflect the uncertainty of mode choice decisions for 
one given set of passengers in one specific infrastructure scenario. As a result, hundreds of 
thousands of runs within the same procedure are required. NREL’s HPC system, Eagle, 
facilitates the parallel computing of these runs. In Eagle, the parallel jobs are structured to take 
advantage of all the 32 cores of each node.  
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5.2 Athena SUMO model  
5.2.1 DFW Terminal Area Modeling 
To represent the DFW terminal curbside behavior, we built the SUMO microsimulation model 
from a road network and a demand model comprised of various route trips. For the network, we 
extracted the DFW airport from OpenStreetMap. The network captures various attributes of the 
airport geometries. We validated the network by adjusting road speeds to observed speeds from 
TomTom probe data. For the demand side of the model, we utilized predicted traffic demand 
forecasts from our previously developed demand predictive model. We developed a terminal-
specific driver behavior model to better evaluate the travel time for curbside pick-up/ drop-off 
(PUDO). The terminal behavior model has two components: 1) a more realistic curbside driving 
model and 2) a garage-parking-as-remote-curb model. 

We developed a native SUMO function to simulate the PUDO behavior at the curbside and to set 
stops at the curb links. Using this function, the vehicles will queue one after another on the right 
most lane. When the early-arrival vehicles finished PUDO and open the downstream curbside, 
the newly arrived the vehicles will still queue after the last vehicle. In reality, the human drivers 
behave differently: 

1. the vehicles stop at a random location along the curbside instead of following a queue;  
2. the later arrived vehicles could go to the front and use the recently opened curb space; 

and 
3. when the right most lane (curbside) becomes fully occupied, the newly arrived vehicles 

may stop on the second right most lane (double parking). 
We developed a more realistic curbside driving model to achieve the aforementioned human 
driver behaviors. As shown in Figure 17, the curbsides are divided into a number of parking 
spaces (shown in blue color). The PUDO vehicles (the red passenger cars) will stop randomly on 
the open parking spaces for a PUDO duration following a uniform distribution. If the curbside 
parking spaces are all occupied, the driver will pick a random location to wait. As the vehicle 
slows down, if there is a new parking space open down the road, the driver will move on to the 
newly opened parking space. If there is still no open space after the vehicle is fully stopped, the 
vehicle will use the stop (on the second lane or the third lane) to pick up or drop off passengers. 
The vehicle will park where it is stopped and stop for a random PUDO duration. 
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Figure 17: DFW Curbside Terminals 
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Figure 18: Curbside parking at an airport terminal 

In Figure 19, we compared the behavior of SUMO driver models (in red) to our custom driver 
behavior algorithm (in dashed blue). The x-axis is the demand generated as an input to the 
simulation and the y-axis is the observed output flow over the PUDO edge during the simulation. 
We can tell from the figure that the custom algorithm increased the capacity of the curbside by 
implementing a more realistic behavior of drivers. This is shown by an average increase in 
observed flow in vehicles per hour over the curbside edge compared to the default driving 
behavior. 

 
Figure 19: Comparing SUMO default driving behavior to realistic curbside driving model. 
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The garage-parking-as-remote-curbs model is a queuing model which takes the overflow of 
curbside traffic to the garage at the terminal and uses part of the garage as PUDO zones. The 
newly arrived vehicle chooses to go to parking garage at the terminal if the curbside parking 
spaces are fully occupied. When a vehicle goes to the parking garage, it is removed from the 
road network in the SUMO simulation and is added to a virtual queuing system to model the 
garage parking pick up and drop off process. Within the parking garage, we define a certain 
number of parking spots converted as “remote” curbside spaces. Vehicles going to a parking 
garage for PUDO will use the parking spaces. After PUDO, the vehicles will be added back to 
the road network to leave the terminals. 

5.2.2 Remote Curbside Modeling 
Another part of our SUMO modeling deals with simulating remote curbside areas at the north 
remote parking and south remote areas at DFW as shown in Figure 20. These remote curbs 
would be used by DFW patrons to either avoid congestion within the DFW terminal areas, or to 
avoid having to pay a fee to access the terminal curb spaces. Figure 21 shows the base network 
for this remote curb simulation. We used a simple geometry with straight lines to limit the 
complexity of network modifications for curbside expansion. In the diagram, the top road 
segment, shown as ‘Remote Pickup Drop off Curbside,’ represents where the passengers are to 
be dropped off or picked up. The lower road segment represents where the airport shuttles would 
collect the passengers for transport to their respective terminal for departing flights. Arriving 
passengers who are being collected at the terminal are also dropped off at the ‘Remote Bus 
PUDO Curbside’ to leave the airport. In the middle, between the two road segments, is the 
pedestrian median where patrons can safely walk across to catch a shuttle bus to the terminal or 
to be picked up at the curbside after being transported by the shuttle. 

 
Figure 20: DFW airport network with North and South Remote Curbside candidates. 
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The incoming lanes refer to the tributary edge feeding the curbside PUDO zone. The incoming 
lanes are important because they limit the number of vehicles that can pass along the curbside. 
The remote curbside area is comprised of blue spaces. These spaces are primarily only used on 
the right-most lane. When the right-most lane slots fill to capacity, double parking occurs, and 
the middle lane begins to be utilized due to congestion along the right-most lane. 

 
Figure 21: Remote Curb Base Network 

We conducted initial analysis where we varied the number of lanes, incoming demand, and 
number of curbside slots. We found that varying the number of lanes tended to be 
inconsequential to the outcome of the simulations. This is due to the capacity limitations 
determined by the number curbside slots. Since on average, the vehicles would stop along the 
curbside with a dwell time of 90 seconds, we could translate that to the average vehicles per hour 
that could be serviced within that hour. Subsequently, the number of vehicles serviced per hour 
could be considered as the capacity along the curbside. Thus, we chose to only explore variation 
in demand and network length while keeping the number of lanes constant (i.e., two incoming 
lanes). Looking at Table 4, we can see that two lanes produced a capacity of up to 3,160 vehicles 
and resulted in a reasonable curbside length of 0.5 miles. As the number of lanes increases, the 
length of the remote curb also needed to be augmented to accommodate high vehicle flow. At 
some point, this resulted in a curbside that was unreasonably long (e.g., a remote curb of 3 miles 
and 6 lanes). Since such long curbside areas would not fit in the two candidate locations 
identified for building remote curb at DFW, we did not consider them for simulation.  

Table 4: Capacity of network given number of lanes and curb spots 

Lanes 1 2 3 4 

Capacity (vph)  1580 3160 4740 6320 

Curbs Required to satisfy Capacity 40 79 119 158 

Length in Miles (miles) 0.25 0.5 0.75 0.99 

To understand the dynamics, including vehicle travel time and delay, along the remote curbside, 
we explored various combinations of demand and number of curbs. We analyzed how vehicle 
delay was influenced by various levels of incoming demand. Once the remote curbside 
simulation reaches the network capacity, the driving behavior of the vehicles began to 
breakdown and the simulation produced unrealistic results. Hence, we ignored simulation 
scenarios with incoming volume greater than the capacity levels. In Table 5, we can see the 
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various ranges of network size and demand generated. Along with each combination of demand 
and network length, we ran many simulation scenarios with varying simulation seed values and 
aggregated the resulting performance measures to smooth out the randomness inherent in SUMO 
simulations. We decided to stop at 80 curb spots and 2 lanes, because we found this was a 
curbside with a reasonable length of 0.5 miles, given the limited space for building remote curb 
areas as shown in Figure 9. Additionally, we assumed that if the airport needed more remote curb 
space, they would build parallel curb areas with 2 lanes and 80 curb spots.  

Table 5: Range of demand and curbside slots explored in simulation for remote curb. 

 Lower bound Upper bound 
(capacity) 

Interval 

Demand (vehicles per hour) 100  3200  100  

Network curb slots 10 80  10  

Curb Length (Feet)  361 2657 328 

Free flow travel time in seconds 108 212 N/A 

Observed Delay in Seconds [0, 138] [0,537] N/A 

In Figure 22, we explore the relationship of incoming demand (flow rate) to the observed vehicle 
delay given a number of curb spots. Delay is measured as observed travel time over the PUDO 
edge in the simulation minus the free flow travel time on that same edge. The free flow travel 
time is estimated by taking the speed limit on the PUDO edge and calculating the time it would 
take to travel through the edge given a of number curb spots and speed limit of 15 miles per hour 
plus the average dwell time (90 seconds) on the curb for pick up and drop off.  

The orange lines in Figure 22 represents the average delay for each incoming flow rate 
given a quantity of curb spots (stated in legends). The faint green dots that span vertically for 
each flow rate represent the individual points of delay for 50 simulation scenarios we ran for 
each combination of flow and number of curb spots. These are displayed to show the distribution 
of delay for each scenario. As you can see from the plots, the delay tends to increase until a 
certain threshold and then begins to plateau. The plateauing occurs at a capacity level dictated by 
the constraints in the simulation. In real world circumstance, this scenario may look different 
than this plateauing effect seen in the simulation. For modeling purposes, the point at which the 
plot begins to plateau is viewed as the point where the remote curb starts to experience severe 
congestion and is no longer functioning. Thus, in the infrastructure model, these curves are 
extended using the information prior to the plateau point. 
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Figure 22. Delay due to increased flow, broken down by number of curb spots. 

5.3 Shuttle Bus Route Optimization Model 
The shuttle bus optimization model developed for the Athena project is described in detail in 
(Sigler 2021). This model is formulated as a mixed integer linear program where the user can 
specify the number of routes, capacity of the buses, allowable headways, and maximum in-
vehicle travel time parameters. The model was developed to optimize shuttle operations that 
move DFW passengers between the rental car center and the five terminals, which can more 
generally be thought of as the ‘travel within the airport premises’ problem. The solutions 
generated by the model consists of a set of routes, each with a specified number of buses and the 
capacity of the bus servicing it. The optimization model was designed with some concepts from 
the classical VRP with pick-up and delivery time windows but was augmented and modified in 
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many ways to accomplish the goals associated with the ‘travel within the airport premises’ 
problem. In order to conduct meaningful optimization runs with respect to the DFW rental car 
center, DFW provided access to their vehicles and data systems. DFW allowed NREL 
researchers to collect Controller Area Network (CAN) bus data from the airport rental car 
shuttles using vehicle data loggers resulting in approximately 100,000 miles of 1Hz data from 14 
buses over a period of one month of shuttle operations (Kotz, 2020). DFW also provided Spatial 
Positioning on Transit (SPOT) data, which uses commercial hardware to capture information 
pertaining to shuttle operations. SPOT data combined with CAN data provided the information 
required for the optimization model.  

Moving passengers between a remote curb and the five DFW terminals is another ‘travel within 
the airport premises’ problem where the insights gained from the rental car center route 
optimization work was relevant. One key insight from the optimization work conducted with 
respect to the DFW rental car center was data driven assignment of shuttles, by time of week, 
using the standard buses on the standard routes was an easy to implement solution that could 
save up to 20% in energy consumption but only increase the average passenger wait time by 2 
minutes. An example of some results which exhibit these features in shown in Figure 23. Since it 
is likely the DFW remote curbs, if implemented, would have similar travel times to remote curb, 
given the layout of the current airport, we used these insights and implemented the remote curb 
busing system in our infrastructure model such that the standard buses and routes were used but 
the number of buses in service is determined in a data driven fashion by time of week. 

 
Figure 23: Optimal routes computing assuming 43 passenger buses, a 20 minute headway, a 15 

minute max in vehicle travel time, and a passenger arrival rate two standard deviations above the 
empirical mean arrival rate. 

5.4 Athena ASPIRES model 
In order to model and conduct detailed evaluations of operations at an airport bus system, an 
event driven simulation was developed named ASPIRES (Airport Shuttle Planning and 
Improved Routing Event-driven Simulation). This simulation was originally motivated by the 
need to test the routes computed by the route optimization model for the DFW rental car center. 
Thus, a digital twin of the DFW rental car center was constructed and was engineered within 
framework general enough to test other shuttle systems.  
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This simulation model was developed as a Python module using SimPy to simulate and evaluate 
current and potentially improved future airport shuttle operations (Matloff, 2008). The 
simulation model tries to address the hard-to-calibrate problems faced by most traffic simulation 
packages and is mainly driven by empirical distributions of real-world data which drive the 
simulation rather than a calibration process. The more data collected, the more realistically the 
simulation can perform. The simulation has been highly optimized for runtime speed, as a result 
simulating one day of shuttle operations takes around one second. The ability to execute fast 
simulations enables the exploration of many different infrastructure configurations and 
operational policies under a wide range of different scenarios. 

The simulation model can simulate travel times, dwell times, and passenger arrivals using 
empirical distributions to capture the stochastic nature of DFW’s rental car center shuttle bus 
operations. Outputs show passenger statistics, shuttle statistics, and charging station statistics for 
EV buses. The passenger statistics include the waiting time of each passenger, the queue length 
of each stop at any time, the number passengers left after each shuttle bus pickup, and the total 
travel time from one stop to another stop. The shuttle statistics include the routes record, the 
number of passengers onboard at any time, the distance traveled until any time, the energy 
consumed until any time, and the location of each bus at any time. The charging station statistics 
record, at any time of the day, the number of chargers being used. 

Using the simulation model and the shuttle operation data, we can simulate and evaluate 
different system designs of a shuttle bus system. Figure 24 shows a sample state of charge (SoC) 
profile of an electric bus during a week of simulation. Figure 25 shows the charger usage profiles 
for 28 days of a simulation and for an initial warm up day. 

 
Figure 24: Sample SoC profile of an electric bus for one week. 



 

31 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 25: Charger usage profile. On the left is the profile for a 29-day simulation where the first 

day is a warm-up day. On the right is the charger profile for the warm-up day. 

Using these features a simulation-based optimization model was developed to address the 
charging station planning problem for an electrified bus system. The studied shuttle system 
connects the rental car center and the five terminals at DFW and has a fleet of 46 compressed 
natural gas (CNG) buses. During operation, only 29 buses are needed to ensure the maximum 
service frequency. The ratio between the fleet size and the number of activate buses is about 
46/29≈1.6. Using the simulation-based optimization model and a genetic algorithm, we found 
that to replace all CNG buses with battery electric buses while minimizing the total capital cost 
and maintaining the current service frequency, we need to equip electric buses with a battery 
capacity of 50 kWh and install 4 chargers with a charging power of 210 kW. However, after 
conversations with DFW, it was determined that the logistical challenges of having small 
batteries that charge quickly but often would be unrealistic although our optimization showed it 
was the most cost-effective option. Instead, DFW recommended we use 550kWh batteries and 
chargers with 90 kW charging speed in our modeling. These recommendations were based on 
conversations DFW has had with different EV bus vendors.  

To inform the needed model parameters in our infrastructure model for the remote curb bus 
system, we assume that remote curb shuttle systems will have similar locations and 
characteristics as the rental car shuttle system. Therefore, we assume that the battery capacity of 
electric buses will be 550 kWh and the charging power of chargers will be 90 kW. Based on 
simulations conducted, it was determined that 8 chargers would be needed to electrify the rental 
car center bus fleet and the current level of service. This implies that the ratio between the fleet 
size and the number of chargers should be 46/8=5.75 at the remote curbs. The ratio of active 
buses to total fleet size was chosen to be 46/29≈1.6 in accordance with the rental car fleet. Using 
these statistics from simulations, we were able to construct the needed constraints in the 
infrastructure model accurately determine the needed number of buses and chargers for different 
sizes of remote curbs.  
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6 Results 
6.1 Model Implementation and Solution Process 
Alongside those supporting models discussed in the previous section, we have implemented the 
core optimization model discussed in Appendix A using the open-source algebraic modeling 
language Pyomo, and we have leveraged the mpi-sppy python package which works in 
conjunction with Pyomo. Mpi-sppy provides an HPC ready scalable framework for constructing 
and solving multi-stage-stochastic programs. Our results have been obtained using the mpi-sppy 
implementation of progressive hedging on the NREL HPC system, Eagle, using 144 nodes and 
4,320 cores. Each of our model runs problem considers 21 years of operations and 90 TSAROs 
for each year leading us to consider 90*21*16= 30,240 operational circumstances. The full 
undecomposed problem is a mixed integer linear programming problem that has approximately 
200 million decision variables. To solve the problem, we decompose it into 1440 subproblem 
which progressive hedging solves in parallel to get a solution to the global model. The results 
from running progressive hedging on our problem indicate that the solutions obtained are within 
1.4% [SD1] if the optimal solution, and we are usually able to compute solutions in less than 30 
minutes of wall clock time [SD1].  

6.2 Parking Conversion to Curb Space 
In order to understand the benefits of converting parking spaces in the terminal parking lots to 
passenger PUDO spaces, a large number of SUMO simulations were run with different 
percentages of cars visiting terminal parking lots instead of the curb. These experiments were 
done to construct surrogate functions that would characterize, for a fixed volume of cars visiting 
a terminal curb, the degree congestion in the terminal area would be reduced by converting 
different numbers of parking spots to passenger PUDO spaces. The SUMO experiments revealed 
that this was not a beneficial strategy for the following reasons: 

1. The congestion in the terminal area road network often occurs within on/off ramps (as 
shown in Figure 26) or due to the weaving of traffic flows (as show in the red circle in 
Figure 27) and is not due to overcrowding of the terminal curb areas.  

2. The parking garages are not designed to handle high throughput of cars, and ramps 
associated with the garages can get crowded because of this.  



 

33 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 26: DFW road network with cars backing up on the ramp to enter a terminal curb area. 

 
Figure 27: Weaving of Traffic Flows 

Thus, we often saw in our SUMO experiments that routing cars through the terminal garages 
made congestion worse. Based on these experiments, it seems that road infrastructure based on 
easing difficult lane changing for drivers and expansion of congested on/off ramps would be a 
more favorable approach for reducing terminal area congestion. These road network 
augmentations were out of scope for the Athena project but could be an interesting topic of 
research in the future. 

As a result of these observations, we eliminated the parking conversion form of infrastructure 
expansion from our model runs and only considered building remote parking and remote curb 
infrastructure. This elimination led the model to address terminal area congestion by reducing the 
number of cars that enter the terminal area at all. This is achieved the using congestion pricing 
and building lower cost options outside of the terminal area (i.e., remote curb, and remote 
parking).  
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6.3 Quasi Dynamic Pricing 
The infrastructure model chooses prices for different parking products and terminal curb access. 
For each year, prices are set for 16 different time points (season, day of week, time of day). In 
our work, season is either {Fall, Winter, Spring, or Summer}. Day of week is either {weekend or 
weekday}, and time of day is either {on-peak or off-peak}. Hence, there are four times of the 
week where prices are set, and those prices are set each season of the year. For the purposes of 
our model, the prices set at those four times of week can be thought of as constant over the 
season. For example, the Fall weekday on-peak price can be thought of as relatively constant 
over the Fall season. In practice, these prices could be set at the monthly, weekly, or daily level. 
It is possible that they could even be set in real time. However, DFW has shared that their market 
research indicates that passengers want transparency into the prices they will pay at the airport at 
the time they plan their trip. Hence, at this point in our research we are only making the leap 
from static prices to quasi dynamic pricing, where there are prices set for different times of the 
week which vary seasonally. We think this strikes the right balance between a novel pricing 
approach, customer transparency, and practicality.  

Another aspect of pricing is the rate at which we allow the prices to increase from their current 
levels and under what conditions we allow the prices to increase. Since having the remote curb 
provides passengers with a free option, it seems reasonable to allow prices to be increased once it 
is built. However, even once the remote curb is built, it does not seem reasonable to let the prices 
be raised too quickly. Thus, to have a more realistic implementation of prices, we allow the upper 
boundary for the prices to be raised one increment each year until a maximum price level is hit. 
The increments are either $5 for remote parking and terminal congestion or $8 for terminal 
parking. Valet and express parking are raised proportionally to terminal parking. Below in Figure 
28, one can see how the upper bounds on prices would increase if a remote curb was built in 2030. 

 
Figure 28: Plot of toll upper bounds over time if remote curb was built in year 2030. 
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In the case that remote curb is not built, we specify that the model must keep the prices at their 
current levels. This is to ensure that the model does not allow the airport to exert unrealistic 
monopoly behavior on its customers. The current mode choice model is not equipped to 
represent passengers choosing other airports, other forms of travel, or deciding not to travel at 
all. These effects would be relevant if the model was able to charge high prices without 
providing an affordable option like the remote curb. Therefore, for the results reported the prices 
are not raised if remote curb is not built.  

6.4 Passenger Experience 
To ensure the model makes infrastructure decisions which account for the DFW passenger 
customer experience, customer service penalties are included in the model. As depicted in Figure 
5 in Section 4, these customer service penalties are related to parking, the busing of passengers to 
and from terminals, and congestion at remote curbs and the terminal area. In particular, for 
parking the customer experience penalties are as follows: 

• If a parking lot overflows it is assumed those people go to another parking lot to park. It 
is assumed this takes them 15 minutes to move to the other parking. As a result, the 
model’s objective function in penalized (0.25 hours) * (an hour of a DFW passengers’ 
time) for each person this happens to.  

• If all parking at DFW is full, the objective function is penalized the cost of an average 
DFW flight for each person who cannot park.  

In the case of shuttling passengers between terminals, remote curbs and parking lots the 
customer experience penalties are as follows: 

• If a bus leaves a person behind (at parking or the remote curb), it is assumed this delays 
the customer 15 minutes, and the model’s objective function in penalized (0.25 hours) * 
(an hour of a DFW passengers’ time). 

Finally, in the case of delay at remote and terminal curbs, the customer experience penalties are 
as follows: 

• If the average delay in the terminal area or a remote curb exceeds 10 minutes, it is 
assumed that the whole airport system begins to slow down, and all passengers are 
delayed in some manner. This assumption is meant to capture the fact that the airport is a 
collection of subsystems that influences one another, and failures of performance are not 
confined to individual subsystems.  

• To estimate this effect, we multiply the number of minutes beyond the allowed 10 minute 
delay by the whole DFW passenger population that hour, and multiple that by the value 
of time. For example, consider the case where 4,500 people are entering or leaving the 
airport that hour and the delay at the remote curb is 15 minutes. In this case, we penalize 
the objective function by the amount 4500*5*(average passengers’ value of time).  

We also note that our model uses mode choice behavior that assumes passenger behave under the 
assumption there is enough capacity in the system for their mode of choice. That is to say, the 
model does not have any mechanism to capture passengers learning to avoid the remote curb on 
weekdays at 5:00pm, for example. In the model, the passengers assume a smooth experience 
when making their mode choice. As a result, our model fails to capture the passenger mode 
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choice patterns that would emerge as a result of previous experiences had by passengers. Finally, 
in our model, passengers do not have the option of not flying or choosing a different airport. In 
reality, large delays or high prices might cause passengers to exercise these options. Future work 
could include enhancing the model to account for these more complex mode choice dynamics so 
stress on the system could more accurately be captured through the penalties mentioned above. 

6.5 Simulation of Infrastructure 
The infrastructure model uses a two-stage model to compute optimized infrastructure 
modifications to the airport. However, there are different levels of uncertainty present in actual 
airport operations which could justify a three or even four stage stochastic model. For example, 
infrastructure must operate well under a variety of operational circumstances, and the 
infrastructure decisions must be made years or even decades before those circumstance might 
arise. This alone necessitates a two-stage model where the first stage decisions are infrastructure 
improvements, and the second stage decisions are daily operations decisions for different airport 
circumstances that might arise in the future. Yet, daily operations’ decisions must be made under 
uncertainty as well. For a current example, consider that mode choices and demands on the 
system are stochastic, and making decisions about how many buses to use on different “within 
premises airport shuttle routes” must be made under uncertainty. Another example relevant to the 
infrastructure model in this report is congestion pricing effects on mode choices. When the prices 
are set ahead of time, it is not known precisely how the population of passengers will respond to 
the prices and how mode choice volumes will materialize as a result. Such operational 
uncertainties can be represented with a third stage in the model, where a single set of prices are 
chosen for a set of possible mode choice responses from the DFW passengers. Unfortunately, 
trying to solve such versions of the model has proved intractable at this stage in our research. 
Thus, we have used a two-stage model as an approximation of a three-stage model. This comes 
at the risk of our model underestimating the infrastructure needed for efficient airport operations. 
The reason for this is that our two-stage infrastructure model assumes that operational decisions 
are made with certain information and perfect forecasts regarding demand and mode choice 
behavior. The need for the third stage in the infrastructure is largely dependent on how well 
demand and mode choices responses to prices can be forecasted. An additional factor is how 
dynamic of a pricing scheme DFW customers will tolerate. If high quality forecasts can be 
created and used in conjunction with a pricing scheme that is sufficiently dynamic, the need for a 
three-stage model is reduced. 
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Figure 29: DFW infrastructure simulation workflow. 

To test the performance of the optimized infrastructure computed using the two-stage model, we 
developed a simulation workflow to evaluate the infrastructure decisions under more realistic 
operations conditions. The workflow proceeds as follows: First, operational models are 
constructed for a variety of future hours with the prescribed infrastructure and a forecast of 
demand and mode choice behavior. These models are then solved, and the pricing decisions 
computed are extracted. Next, a second set of operational models are constructed for the same 
hours using the prescribed infrastructure, the actual demand, and mode choice behavior, and the 
computed prices as fixed parameters. These models are then solved, and various performance 
information is saved and aggerated to access the quality of the infrastructure decisions. This 
process allows us to explore how the quality of the operational forecast used to set prices affects 
operational performance. We show in the later sections of this report that the effect can be 
significant and further research into how to solve three stage versions of this model could be 
warranted.  

The actual demand and mode choice behavior is represented by 9 additional TSAROs for each 
year. If mode choices responses to prices can be perfectly forecasted, the two operations models 
will use these 9 additional TSAROs for each year. If we consider imperfect forecasts, then the 
first operational model for determining prices will use randomly chosen TSAROs as the forecast 
of demand and mode choice behavior.  

6.6 Standard Model Results 
The standard model represents a baseline version of the model that has the best estimates that 
could be made for the model parameters and does not consider AVs. The model determines 
infrastructure to be built while considering its cost, the cost of bus and remote curb operations, 
emissions costs, and customer service penalties which are translated to people value of time and 
costs of missed flights. Here we present the infrastructure prescribed by this version of the 
model.  
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6.6.1 Standard Model Infrastructure Results 
The primary purpose of this model is to obtain a timeline of infrastructure improvements. These 
are relatively straight forward to visualize. Figures 30-31 show the infrastructure build results. In 
these results the model determines the decisions that would maximize revenue, and minimize 
infrastructure costs, operations costs, emissions costs, and costs the model imposes for poor 
passenger service. Here, we see that from Figure 30 the remote curb is expanded incrementally 
every five years at both the “north” and “south” sites along with cell phone parking spots, for 
vehicle staging purposes. As discussed in the next section, it appears remote curb used in 
conjunction with dynamic pricing provides a mechanism to manage terminal congestion and 
generate revenue for the airport. It also seems plausible that it can reduce terminal area emissions 
by a non-trivial amount. 

 

Figure 30: Plot of remote curb pickup/dropoff spots and vehicle staging parking spots expanding 
over time for the north and south remote locations. 

 
Figure 31: Plot of remote curb electric bus and charger deployment over time. The plot shows 

steady growth in EV bus and charger infrastructure to accommodate increasing remote curb and 
parking shuttle needs. 

In Figure 31, the battery electric buses used to move passengers between the terminals and the 
remote curb are purchased gradually over the planning horizon as the remote curbs are expanded. 
The total number of buses fluctuates up and down over time, because the buses are retired after 8 
years of service and new buses are only purchased every five years due to the five year 
investment cycle we assume. This service life of these buses was based on data from DFW’s 
current bus fleets. This number might be somewhat different with electric buses in practice. In 
practice, DFW might purchase the buses as needed instead of every 5 years which would make 
the plots in Figure 31 smoother. However, given the 5-year investment periods the model uses, it 
buys enough buses to handle the forecasted increase in demand plus the number of buses 
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scheduled to be retired from use in the next 5 years. We also see in Figure 31 on the secondary 
vertical axis, the number of chargers gradually increasing with the number of buses over time. 
Remote parking is significantly expanded at the first parking expansion opportunity and then 
once more to a lesser degree at the last building opportunity in the horizon. There are a few 
possible reasons for this significant expansion in parking. One reason is that it is a cheaper form 
of infrastructure relative to remote curb, however, like remote curb, it does require the purchase 
of buses and chargers. Similar to the remote curb high terminal area, pick-up/ drop-off tolls and 
parking terminal tolls have the ability to divert people to remote parking, thus it might be an 
attractive option for reducing terminal congestion assuming dynamic pricing can be used. 
Another possible reason for the large amount of parking built is a sensitivity in the model 
parking constraint to the average duration people park and the hourly incoming volume of cars. 
The average occupancy of parking lot can be estimated by multiplying the average duration 
parked by the average arrival rate of incoming cars. This fact is used in the models parking 
constraints which estimate parking lot occupancy. Due to the quadratic nature of this estimate 
errors in average duration or the volume of cars arriving can lead to drastic overestimations of 
the occupancy and result in the model overestimating the needed number of parking spots. Such 
errors could be causing the large number of remote parking spots recommended. Regarding the 
remote parking buses, similar behavior is observed in Figure 32 as in Figure 31, which shows the 
number of battery electric buses and needed chargers added over time to the fleet that serves the 
remote parking lots. We note that the north and south remote parking lots are not served by 
separate routes, so they share a bus fleet and a set of chargers. Finally, we note our results 
indicated that for both the “north” and “south” remote curb sites, two car lanes and one bus lane 
are constructed for access purposes. 

 
Figure 32: Plot of remote parking expansion and the supporting electric bus and charger 

deployment over time. 

In Table 6, we provide a complete summary of all the infrastructure built in total over the 
horizon which complements figure 33, where those improvements are visualized along the 25 
year timeline. We also provide the sources that were used to estimate the costs of different 
infrastructure improvements. We note that all costs provided are in 2021 dollars. In total the 
model recommends $336,105,000 in infrastructure improvements over the 2025 to 2045 horizon. 
In the following section we provide an analysis of operational simulation results where these 
infrastructure decisions were tested. This analysis provides deeper insight into why the model 
recommends these specific infrastructure improvements. 
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Table 6: Recommended infrastructure costs. 

Item Quantity Costs Data 
Source 

Total Cost 

Remote Curb Space 
With Rain Shelter 

140  $145,000 per spot Industry 
Experts, 
(Bushell 
et al. 
2013) 

$ 20,300,000  

Remote Curb Staging 
Parking Spaces 

109 $5,000 per spot Industry 
Experts, 
DFW 
survey, 
(Broin et 
al. 2017) 

$545,000 

Remote Curb Connecting 
Road Miles 

6 $2,360,000 per mile (Broin et 
al. 2017)  

$14,160,000 

EV Buses 550 Kwh Battery) 314 $800,000 per bus DFW $251,200,000 

EV chargers (90 Kw) 37 $100,000 per charger DFW $3,700,000 

Remote Parking Spaces 9240 $5,000 per spot Industry 
Experts, 
DFW 
survey, 
(Broin et 
al. 2017)  

$46,200,000 
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Figure 33: Timeline describing recommended infrastructure builds for baseline scenario. 

6.6.2 Standard Model Operations Results 
To estimate how the infrastructure prescribed in Section 6.6.1 would perform, we performed the 
simulation procedure described in Section 6.5. The actual demand and mode choice behavior 
was represented by 9 additional TSAROs for each year. This provides in total 3,024 operational 
time points where the infrastructure is simulated. We conducted the simulations in two ways. 
The first way assumed the demand and the mode choices responses to prices can be perfectly 
forecasted. The second way assumes these quantities can be forecasted but in an imperfect 
manner. In the case, where the mode choices responses to prices can be perfectly forecasted, both 
the operations model and the operations model with fixed prices use these 9 additional TSAROs 
for each year. In the case where we consider imperfect forecasts, the operational model for 
determining prices uses a randomly chosen TSARO from the pool used for the infrastructure 
model as a forecast of demand and mode choice behavior, and the operations model with fixed 
prices uses the 9 additional TSAROs for each year as “actuals.” By simulating the performance 
of the infrastructure in these two ways, we can better understand the impacts of inaccuracies in 
operational forecasts. It can be informative to visualize operational decisions from the simulation 
to understand how the model is operating the airport and utilizing the infrastructure built within 
the simulation. The results presented in this section are for the case where forecasts are perfect 
unless otherwise specified. 



 

42 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

To show the internal mechanics of the operations model used for simulation, we extract the 
results for one operational context over the 21 year horizon representing a peak hour of 
operations on a weekday in Summer with a high increasing demand rate and a highly efficient 
emissions technology adoption rate. Figure 34 shows the prices that were set during this hour 
over the model horizon. We see large variations in the prices across 21 years. There does appear 
to be a slight upward trend over time, especially in the terminal parking and PUDO tolls. Since 
the prices determine the passenger mode choice distribution in the model, it is helpful to look at 
the mode choice distribution over the model horizon. 

 
Figure 34: Plot of terminal tolls and parking prices for one representative scenario. Terminal 

parking price and remote parking price stays relatively constant in this scenario while the 
congestion toll increases steadily over the 20 year period. 

Figure 35 shows the passenger volume distributions for this hour amongst different travel modes 
across the 21 years. For simplicity, we have grouped airport shuttle, charter bus, hotel shuttle, 
Park N Fly, Parking Spot, and the rental car center into the category of “other modes.” 

 
Figure 35: Plot of passenger mode distributions for one representative scenario. 
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These modes in the “other modes” category all use shuttles or buses to move passenger to and 
from the terminal curbs and can, in general, be thought of as high occupancy vehicles. We also 
note that we have included the valet parking volume in the terminal parking category. 

In Figure 36, we show the number of buses in service during this hour over the model horizon. 
We see that the number of buses in service for this hour changes quite a bit from year to year. 
Each bus fleet has a minimum number of buses that must be in service. From Figure 36, we can 
see that remote curb and express parking fleets vary in response to demand, while the remote 
parking seems to always be operating the minimum number of buses. In studying these figures, 
we observe that although the prices fluctuate over the years, there seems to be general mode 
distribution trends that are preserved across the years. We see that the remote curb serves a 
significant portion of passenger volume, as well as the “other modes” category which uses high 
occupancy vehicles. Terminal parking is the mode choice with the next largest volume and high 
profitability for the airport. Transit as a mode appears to be the least attractive mode for 
passengers and accounts for less than 5% of all passenger volumes. Generally, it seems that 
prices are being set to keep these trends in place. It appears the number of vehicles visiting the 
terminal is kept low with higher prices. This seems to suggest that the model is trying to avoid 
congestion in the terminal areas by pushing volume out to the remote curb, while still creating 
revenue through high congestion prices and price combinations that encourage high amounts of 
terminal parking. Figure 37 shows an estimate of the cumulative revenue, only on this hour of 
interest, from parking fees and congestion tolls over the 21-year planning horizon. The total 
estimated revenue is about $16 billion. 

 
Figure 36: Plot of number of buses in service for one representative scenario. 

Moving away from focusing on an individual hour across planning horizon, we now look at 
quantities across all 3,024 operational contexts considered by the simulation, where each context 
represents an hour of operations. These data points can be described in terms of their central 
tendency, spread, or histograms. One question of interest is, given the 3,024 hours of operations 
simulated, how wide was the range of mode share percentage for each mode? Were there cases 
where almost everyone takes a TNC or cases where almost everyone parks at the terminals? To 
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give insight into such questions, Figure 38 provides four box and whisker plots of passenger 
volume distributions among all travel modes for these 3,024 hours of operations. The four box 
and whisker plots correspond to the four times of week that were considered in the simulation 
(on-peak/off-peak and weekend/weekday), and each considers 756 hours of operations. For each 
mode’s boxplot, the left most whisker represents the lowest data point excluding any outliers 
(0th percentile), the right most whisker represents the largest data point excluding any outliers 
(100th percentile), the box shows the range from the 25th percentile to the 75th percentile, the 
orange line within the box shows the 50th percentile value, and the blue “+” shows the outliers. 
Outliers are defined as data points that are beyond the range of [25𝑡𝑡ℎ  percentile −
 1.5IQR, 75𝑡𝑡ℎ  percentile +  1.5IQR], where IQR =  75𝑡𝑡ℎ  percentile −  25𝑡𝑡ℎ  percentile. Figure 
37 shows the trend of high remote curb utilization, high utilization of “other modes,” relatively 
high terminal parking, relatively low terminal curb utilization seems to hold across all 3,024 
hours considered. Figure 38 does show appreciable variation, and this trend mostly likely does 
not hold in each individual hour considered. We also note that there does not seem to be an 
apparent difference between box and whisker plots regarding the for different times of the week. 

 
Figure 37: Accumulative revenue for one representative scenario. 
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Figure 38: Box whisker plot of passenger mode distributions based on all 3,024 operational 

contexts across 21 years. 
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To further investigate the operational behavior of the simulation models, we created three sets of 
histograms using the 3,024 hours of operational results. The first set of histograms shows 
terminal congestion prices for a passenger pickup or drop off (toll values) in Figure 39, the 
second set of histograms shows the percentage of passengers using the remote curb in Figure 40, 
and the third set of histograms shows the percentage of passengers using terminal curbs in Figure 
41. Figure 39 shows that across all these hours of operations the congestion price for passenger 
pickup and drop off in the terminal area is often higher than the current price of $3.  

 
Figure 39: Histogram of congestion prices for a passenger pickup or drop-off (toll values) based 

on all 3,024 operational contexts across 21 years. 
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Figure 40: Histogram of remote curb passenger volume share based on all 3,024 operational 

contexts across 21 years. 

 
Figure 41: Histogram of terminal curb passenger volume share based on all 3,024 operational 

contexts across 21 years. 

We have provided in Figure 42, a histogram that shows what the histograms in Figure 39 would 
look like if the maximum allowable price was always chosen. The difference between the plots 
in Figure 39 and 42 is significant and shows that more complex pricing strategy is being used. In 
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Figure 40, we see that a significant portion of passengers, approximately 12%-25%, are attracted 
to the remote curb. We note that these histograms seem to be skewed towards 20%, and the on-
peak histograms exhibit some bi-modal behavior. Figure 41 shows that approximately 1%-20% 
of passengers use the terminal curb, and the histograms are skewed towards lower percentages 
around 10%. Based on these three sets of histograms and that fact that the prices determine the 
mode choice behavior in our model, it seems reasonable to assume that the higher congestions 
prices for terminal curb access seem to be driving people away from the terminal curbs. This is 
likely done to manage terminal congestion and emissions, while generating revenue. This 
optimization strategy seems to work well with respect to revenue generation. The estimated 
cumulative revenue across the 21 years is reported in Figure 43 for the high, medium, and low 
demand growth scenarios. In all three cases revenue is near $12 billion dollars. 

 
Figure 42: A congestion toll distribution assuming the maximum allowed congestion price is used 

at each time point. This histogram considers the same 756 points used to make any of the four 
histograms in Figure 38. This shows that the histograms in Figure 39 show behavior much 

different than what is observed if the maximum price always used. 

 
Figure 43: Expected accumulative revenue from parking and terminal toll across 21 years under 

different demand scenarios. 
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For completeness we have also visualized the simulation models use of buses over the 3,024 
operational scenarios. To understand how the number of buses used varied, we again created four 
histograms shown in Figure 44. This figure shows the total number of active buses in service for 
remote parking, remote curb, and express parking. As expected, weekday usually requires more 
buses than weekend and peak hours require more buses than off-peak hours. The number of 
active buses for the 3,024 operational contexts ranges from 36 to 65, which further demonstrates 
the robustness of the bus infrastructure decisions in handling a variety of busing needs. 

 
Figure 44: Histogram of total number of active shuttle buses based on all 3,024 operational 

contexts across 21 years. 

To demonstrate the value of the recommended infrastructure in context of operations, we 
constructed a status-quo version of our model that makes no infrastructure improvements and must 
keep the parking and terminal congestion prices at their current levels. We simulated the system 
operations under the status quo against the same 3,024 operational hours that we run the 
infrastructure decisions against. Figure 45 and Table 7 compare the system performance using the 
optimized infrastructure and the status quo infrastructure. In Figure 45, passenger congestion and 
overflow costs refer to costs associated with excess delays at the curbs and DFW parking lots being 
full. Delays at the curb or vehicles needing to go to another parking lot to find open parking spaces 
are penalized based on the average DFW passengers’ value of time. If parking at DFW is 
completely full across all lots, each person who cannot park penalizes the operations model the 
average cost of a DFW flight. One can see that, compared to the status quo with no infrastructure 
improvements, the recommended infrastructure can significantly reduce the passenger congestion 
and overflow cost, although it requires some construction cost and operating costs for shuttle and 
remote curb service. In addition, with increasing upper bounds for parking fees and congestion 
tolls, the recommended infrastructure leads to much higher expected revenue for the airport. 
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Figure 45: Comparison of lifecycle costs and revenues for optimal solution and status quo. 

Table 7: Cost comparison between the airport with recommended infrastructure improvements 
and status quo infrastructure. 

Scenarios Constructi
on Cost 
($106) 

Total 
Operating 
Cost ($106) 

Bus and 
Curb 
Operating 
Cost ($106) 

Passenger 
Congestion 
and Overflow 
Cost ($106) 

Emission 
Cost 
($106) 

Revenue 
($106) 

Optimal Solution 303 1452 612 833 5 12458 

Status Quo 0 17247 236 17011 0 7538 

Table 8 further compares passenger experience using the optimized infrastructure and the status 
quo infrastructure. One can see that with the recommended infrastructure, parking overflow 
probability, especially for terminal parking and remote parking, is significantly reduced 
compared to the status quo. Particularly, with the recommended infrastructure, the probability of 
“All Parking Overflow,” i.e., the probability that the total parking demand (including terminal 
parking, express parking, and remote parking) exceeds the total parking capacity, is reduced 
from 72.7% in the status quo to 0.6%. For express parking, the overflow probability is only 
slightly reduced from 37.8% in the status quo to 36.5% in the optimal solution. This observation 
implies that either the combination of the recommended infrastructure or the dynamic pricing is 
not able to effectively eliminate the overflow at express parking or the cost (or revenue loss) for 
distributing the express parking flow to other modes is larger than the overflow penalty. 
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Table 8: Passenger parking experience comparison between the airport with recommended 
infrastructure improvements and status quo infrastructure. 

Scenario  Optimal 
Solution 

Status Quo 

Terminal Parking Overflow Probability (%) 9.9 48.1 

Remote Parking Overflow Probability (%) 4.1 99.4 

Express Parking Overflow Probability (%) 36.5 37.8 

All Parking Overflow Probability (%) 0.6 72.7 

Remote Curb Shuttle Overflow Probability (%) 3.4 - 

Remote Parking Shuttle Overflow Probability (%) 0.1 0.1 

Express Parking Shuttle Overflow Probability (%) 17.2 17.3 

Remote Curb Over Congestion Probability (%) 0.6 - 

Terminal Curb Over Congestion Probability (%) 0.0 0.0 

Another technical issue to discuss when comparing to the status quo model is that currently there 
are a large number of vehicles which pay to use International Parkway, an arterial highway that 
passes through DFW airport. At present this creates a significant source of revenue for DFW. 
This traffic is referred to as pass through traffic. If DFW were to adopt a more dynamic pricing 
scheme, like the one presented in this report which includes high terminal access fees, one 
concern is that DFW may lose revenue from pass through traffic. Though it may be possible to 
except congestion fees from pass through travels, for sake of argument, we consider the case 
where that revenue source is lost. Using DFW toll plaza data, we have projected out our best 
estimate of the cumulative revenue from 2025 to 2045 for the high, medium, and low demand 
growth cases, using the current DFW rate structure.  

The resulting projections can be seen in Figure 46. Under the extreme case where all pass 
through traffic stops using International Parkway through DFW due to congestion and/or new 
dynamic pricing scheme, the airport will fail to generate about $18 to $19.5 million over the 21-
year planning period from pass through traffic. This, however, does not consider the additional 
revenue that DFW would produce using the pricing scheme presented in this report. For 
completeness, we have provided histograms similar to those in Figure 39 in Figures 47 and 48, 
showing prices for terminal and remote parking. Again, we note that these prices are 
substantially higher than the current values. By providing a free remote curb alternative to 
passengers, the airport might still be able to generate more revenue with higher parking fees and 
congestion tolls. This claim is supported by Table 7, which indicates even when the revenue total 
for the case with optimized infrastructure is reduced by all operating and emissions costs 
(12,458,000,000 – 1,452,000,000 – 300,000,000 – 5,000,000) and $20 million dollars from pass 
through traffic is added to the status quo revenue total (7,538,000,000 + 20,000,000), the 
difference is still on the order $3 billion dollars in favor of the optimized infrastructure case. This 
suggests that the loss of pass through traffic revenue should not deter DFW from considering 
infrastructure modifications of the nature discussed in this report. 
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Figure 46: Expected accumulative revenue from passing-through traffic across 21 years under 

different demand scenarios. 

 
Figure 47: Histogram of terminal parking fees based on all 3,024 operational contexts across 21 

years. 
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Figure 48: Histogram of remote parking fees based on all 3,024 operational contexts across 21 

years. 

The two-stage infrastructure planning model and the above simulation results are based on the 
first set of simulations assumptions discussed where the mode choices responses to prices can be 
perfectly forecasted. To investigate the impact of imperfect forecasts, we further simulated the 
performance of the recommended infrastructure decisions with the first operational model using 
randomly chosen TSAROs to determine prices (see section 6.5). 

 
Figure 49: Comparison of lifecycle costs and revenues under the case with perfect and imperfect 

prediction of passengers’ mode choices. 
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Figure 49 compares the system performance with perfect and imperfect forecasts. One can see that 
compared to perfect forecasts, imperfect forecasts will lead to much higher passenger congestion, 
overflow costs, emission costs, and much lower revenue. Figure 50 further compares the average 
delay experienced by remote curb users with perfect and imperfect forecasts of mode choice 
response to prices. We can observe from Figure 50 that remote curb users, especially the north 
remote curb users, might experience much higher travel time (or more severe congestion) with 
imperfect forecast. With perfect forecast, the delay experienced by the south remote curb users is 
below the 10-minute threshold throughout the planning period, and the delay experienced by the 
north remote curb users is below the 10-minute threshold from year 2030 to year 2045 but slightly 
exceeds the 10-minute threshold by less than 5 minutes from year 2025 to year 2029. With 
imperfect forecast, the delay experienced by the south remote curb users slightly exceeds the 10-
minute threshold by less than 3 minutes in years 2034 to 2039, years 2041 to 2042, and year 2045, 
while for the north remote curb users, their experienced delay exceeds the 10-minute threshold in 
years 2025 to 2029 and years 2032 to 2045, with the excessive delay being as high as 43 minutes. 
The above observations imply that the performance of the recommended infrastructure and 
dynamic pricing is significantly impacted by whether mode choices responses to prices can be 
perfectly forecasted. If a perfect forecast cannot be guaranteed, solving three stage versions of the 
proposed infrastructure planning model is worthy to be explored to ensure the performance of the 
recommended infrastructure and dynamic pricing. 

 
Figure 50: Comparison of remote curb delay beyond 10 minutes under the case with perfect and 

imperfect prediction of passengers’ mode choices. 

6.7 Emissions Analysis 
Emissions are considered within the infrastructure model and the operations model used for 
system simulations by considering extra emissions from idling cars when congestion causes 
delays. This is done by estimating the total delay experienced at the remote curb and terminal 
area via congestion functions derived from SUMO experiments. We assume that the total delay 
takes the form of idling and use the total delay, along with vehicle fleet composition statistics to 
estimate the extra gallons of gasoline consumed due to the congestion delay. From that, the 
metric tons of CO2 due to delay at the remote curb can be computed and turning into dollars 
using social cost of carbon estimates from the Environmental Protection Agency (EPA). This 
cost is directly incorporated into the infrastructure models objective function along with the 
operational model used to simulate infrastructure decisions performance. This helps encourage 
the model to build enough remote curb spaces so that severe congestion does not occur at the 
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remote curb. Additionally, it helps encourage the model to build enough infrastructure in the 
form of the remote curb and remote parking that higher prices can be set to shift volume from the 
terminal area to the remote curb or parking areas.  

Beyond building infrastructure to avoid excessive congestion and the related emissions, there is 
another source of emissions reductions related to the purposed infrastructure model. This source 
of emissions reduction comes from cars driving fewer miles to drop people off at the airport 
when they use the remote curb, and electric buses being used by the airport to move passengers 
between the remote curbs and terminals. If we assume the remote curb on the south end of DFW 
is near the rental car center and the remote curb on the north side of DFW is near the existing 
north remote parking lot, then on average, a car that does a pickup or drop-off using a remote 
curb instead of the terminal curb drives 5.44 less miles. Note in our model, we have assumed that 
electric buses are used to move passengers between the remote curb and the five terminals. If we 
make the additional assumption that cars that use the remote curb are all cars that would have 
otherwise used the terminal area curbs, then we can estimate based on the reduction in miles 
driven, the annual emissions saved from cars using the remote curbs. We note that number 
presented below are technically upper bounds on the possible emissions saved due to this 
assumption.  

In Figure 51, we show the average number of cars visiting the remote curb each hour over the 
model horizon. Using this information, we can estimate the annual number of cars projected to 
use the remote curb each year and compute the emissions saved as a result. One complicating 
factor, however, is the rate at which the cars visiting DFW become EVs, since reducing the 
number of miles EVs drive does not reduce vehicle emissions. However, the adoption rate of 
EVs in the future is highly uncertain. To provide a range of possible outcomes, we have 
considered the case where 100% of cars are EVs is 25, 30, 35, 40, 45, or 50 years. 

 
Figure 51: Average number of vehicles visiting the remote curb an hour over the 21 year model 

horizon according to our perfect forecast operations simulations. 
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In Figure 52, one can see the annual tons of CO2 saved in each in these different scenarios over 
the model horizon. In Figure 53, we show the cumulative tons of CO2 saved over the model 
horizon for these scenarios. We note that the bus fleet that serves the rental car center, which 
contains approximately 45 forty-foot buses, produces 5,700 metric tons of CO2 each year. 
Therefore, the emissions reductions estimated in Figures 52 and 53 from the predicted utilization 
of remote curb are non-trivial amounts.  

 
Figure 52: Emissions saved from using remote curbs over the 21 year model horizon considering 
different EV adoption rates. This assumes that remote curb pickup and drops-offs at the remote 

curb would have occurred at the terminal curbs otherwise. 

 
Figure 53: Cumulative emissions saved from using remote curbs over the 21 year model horizon 
considering different EV adoption rates. This assumes that remote curb pickup and drops-offs at 

the remote curb would have occurred at the terminal curbs otherwise. 
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6.8 AV Scenario Analysis 
 One goal of this work was to determine if the adoption of AVs in future years would change the 
prescribed infrastructure decisions from the model. In searching the literature for information and 
forecasts that would inform the construction of likely future AV scenarios, not much was found. 
Due to the lack of available information and forecasts, we decided to examine a few select cases 
that we thought would at least capture the range of possible effects from AVs on infrastructure 
needs. Towards this aim, we considered several AV scenarios as an extension of the baseline 
scenarios described above. In defining these AV scenarios, we made the following assumptions: 

1. We assumed that AVs will be first adopted by TNCs at substantial levels, and thus, all 
AVs in our model are TNCs. 

2. Significant adoption of AVs by TNCs does not occur before 2030. 
3. The percentage of TNCs that are AVs increases linearly once adoption begins. 

To capture AV effects in our model, we define a concept called AV vehicle equivalent (AVVE). 
We define AVVE as the number of non-autonomous vehicles an AV represents from a 
congestion perspective. For example, if AVVE = 0.8, then 100 AVs would be treated as 80 for 
the purpose computing congestion via the congestion functions derived from SUMO simulations: 
congestion = f(0.8*100). 

We consider the scenarios described in Table 9, where each scenario is defines as a tuple 
(AVVE, Year AV adoption starts, annual percentage increase of AVs used by TNCs). We note 
that the use of 0.5 and 1.5 AVVE is extreme. This was deliberately done to have a very complete 
understanding of the range of effects TNC AVs could have on infrastructure needs.  

Table 9: AV Adoption Scenarios 

 Optimistic AVVE Pessimistic AVVE  

Fast adoption rate (0.5,2030,20% of TNCs) (1.5,2030,20% of TNCs) 

Medium adoption rate (0.5,2035,10% of TNCs) (1.5,2035,10% of TNCs) 

Slow adoption rate (0.5,2040,5% of TNCs) (1.5,2040,5% of TNCs) 

We found that the six scenarios have similar build results for remote parking but quite different 
build results for remote curb. Figure 54 shows the remote curb build results for the six different 
AV scenarios. With slow AV adoption rate, both the optimistic AVVE and the pessimistic 
AVVE scenarios have identical remote curb build results as the basic scenario that does not 
consider AVs. This suggests that if AVs are adopted slowly regardless of their AVVE, the 
infrastructure build decisions will not be changed. For the scenario with optimistic AVVE and 
fast adoption and the scenario with optimistic AVVE and medium adoption, the remote curb 
build results are identical. Compared to the basic scenario, without considering AVs, these two 
scenarios have the same build decisions in construction years 2025, 2030, and 2035, but do not 
build remote curb spots in construction year 2040. For the scenario with pessimistic AVVE and 
fast adoption and the scenario with pessimistic AVVE and medium adoption, the south remote 
curb build results are identical to the basic scenario without AVs. For the north remote curb, the 
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scenarios with pessimistic AVVE fast and medium adoption, 100 remote curb spots are built in 
total, with the medium adoption building spots at a slightly slower rate.  

 

Figure 54: Plot of remote curb infrastructure expanding over time in the scenario that includes AV 
adoption. 

Taken together, these observations imply that if the more optimistic AVVE behavior is realized, 
the needed spots for remote curb will likely be lower, while more pessimistic AVVE behavior 
will lead to more remote curb spots needed. Also as expected, faster adoption of AVs might have 
more impact on build results than slower adoption. Figures 55, Figure 56, and Table 10 show the 
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costs and revenue for different AV scenarios. One can see that although different AV scenarios 
have different costs and revenues, the differences are marginal. One potential reason for this is 
that we assume AVs are only adopted by TNCs and TNCs only account for a small portion of the 
total traffic volume. If personal AVs become widely adopted in the time frame considered the 
impact of AVs on infrastructure needs could be more significant. 

 

Figure 55: Comparison of lifecycle costs for different AV scenarios. 

 

Figure 56: Comparison of lifecycle revenue for different AV scenarios. 

We note that these scenarios do not consider certain effects that AVs might have on mode 
choice. For example, AVs might lower the cost of TNCs, making it a more appealing mode 
choice. AVs might also change peoples’ perceived value of time, if AVs allow for people to be 
more productive on car rides, influencing future mode choice distributions. Additionally, we 
were not able to construct a special vehicle class in SUMO that could simulate the effects of 
AVs. This could potentially offer a better estimate of the true AVVE factor. Generally, this work 
has highlighted a need for work on forecasting AV adoption, simulating AV behavior at curb and 
broader road networks, as well as modeling how mode choice behavior might be influenced by 
having AV transportation options. Such research efforts could improve our ability to estimate the 
needed future infrastructure at DFW and other airports.  
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Table 10: Comparison of lifecycle costs and revenues for different AV scenarios 

Scenarios Construction 
Cost ($106) 

Operating 
Cost ($106) 

Revenue 
($106) 

No AV Impact 303 1452 12458 

Pessimistic AVVE and Slow Adoption 316 1440 12456 

Pessimistic AVVE and Medium Adoption 322 1453 12465 

Pessimistic AVVE and Fast Adoption 322 1456 12428 

Optimistic AVVE and Slow Adoption 319 1439 12464 

Optimistic AVVE and Medium Adoption 316 1425 12459 

Optimistic AVVE and Fast Adoption 303 1436 12472 

6.9 Terminal Capacity Sensitivity Analysis 
Our simulations show that the terminal area of DFW can handle approximately 6,000 vehicles 
entering it per hour before major congestion starts to occur. In Figure 57, the number of cars 
going into the DFW terminal area per hour is plotted against the average travel time it takes a car 
to visit a terminal curb and leave the airport. One can see that several outliers start to emerge 
between 5,000 and 6,000 vehicles per hour. This indicates that the SUMO simulation network is 
at capacity. However, several sources of uncertainty in this estimate must be addressed. First, 
from the data above, it could also be inferred that the terminal capacity is 5,500 vehicles per 
hour, and it is not completely clear from the simulation when severe congestion would begin. 
Another issue is that DFW currently has pass through traffic volume along International 
Parkway, which runs through the terminal area. It is unclear how this traffic volume will evolve 
in the future and how it will be affected by terminal congestion pricing. This traffic volume can 
be viewed as a reduction in the terminal capacity and provides uncertainty regarding what the 
true terminal capacity is. Additionally, DFW is planning substantial road network modifications 
to the terminal area ramps and bridges. At present all terminal off ramps from International 
Parkway to the terminals are on the left-hand side of International Parkway, and they are going 
to be moved to the right-hand side. It is not clear what effect this will have on the network 
capacity. We are also not considering the 6th terminal that DFW is planning to build at some 
point in the future, which could change the terminal network capacity as well as the needed 
capacity. Finally, our estimate of the terminal capacity does not consider weather events, traffic 
disruptions, or lane closures due to construction. These types of events can lower the network 
capacity temporally but might occur frequently enough to warrant consideration in the 
infrastructure planning process. 
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Figure 57: CTA flow capacity at DFW Airport derived from simulation. 

To better understand how different capacity values for the DFW terminal area might influence 
the infrastructure recommendations from our model, we have done a sensitivity analysis of the 
infrastructure decisions. We consider another three cases with the terminal capacity being 4,000, 
5,000, and 7,000 vehicles/hour, respectively. We found that, compared to the basic case (with 
terminal capacity being 6,000 vehicles/hour), the above three cases have identical solutions for 
the remote curb construction decisions, while they have slightly different solutions for the remote 
parking construction and shuttle purchase decisions. Figures 58, Figure 59, and Table 11 show 
the costs and revenue for different terminal capacity scenarios.  

 
Figure 58: Comparison of lifecycle costs for different terminal capacity scenarios. 
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Figure 59: Comparison of lifecycle revenue for different terminal capacity scenarios. 

One can see that the differences in costs and revenues among different scenarios are marginal. In 
fact, since the model is solved to approximately a 1.5% difference between the lower and upper 
optimization gap, the difference in the costs and revenue can be entirely attributed to that gap. 
One potential reason for the insignificant impact of the terminal capacity is that the terminal 
vehicle volume is significantly reduced to below the terminal capacity due to the construction of 
remote curb.  

Table 11: Comparison of lifecycle costs and revenues for different terminal capacity scenarios. 

Scenarios Construction Cost 
($106) 

Operating Cost 
($106) 

Revenue ($106) 

Cap 7000 318 1439 12461 

Cap 6000 303 1451 12457 

Cap 5000 318 1439 12461 

Cap 4000 318 1439 12461 

7 Conclusions 
This report has presented the infrastructure expansion model and framework developed as part of 
the Athena project. This framework has been developed with the DFW airport as a use case in 
mind, and we have run computational experiments at scale to study this system. As part of this 
process, we have finalized our data collection. We have finalized our mathematical formulations 
representing airport infrastructure and operations. We have developed a working version of our 
infrastructure model which is implemented in a scalable framework that can obtain solutions 
using multiple nodes and cores on the NREL HPC system, Eagle. We have tested our model 
using 1,440 TSAROs, which considers 30,240 operational circumstances in total, resulting in a 
problem with more 200 million variables. This model was solved in several different 
configurations each using 144 nodes on Eagle, and 4,320 CPU cores. Additionally, a workflow 
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that enables us to simulate the performance of the infrastructure model results was developed and 
deployed on Eagle across multiple nodes. 

We have run the standard version of our model to estimate the needed infrastructure at DFW 
from 2025 to 2045. We have also examined a select set of AV scenarios in order to estimate the 
effects on needed infrastructure from AVs. Additionally, we conducted a sensitivity analysis 
regarding the terminal area capacity at DFW to understand how uncertainties in that estimate 
might influence infrastructure needs. In general, our results indicate that a combination of remote 
parking, remote curb infrastructure, and dynamic pricing can generate revenue, reduce 
emissions, and manage airport passenger growth over time. We note the success of the proposed 
strategy depends on the data collection and forecasting abilities of DFW as was shown in Section 
6.5.2. We have also seen that the AV adoption by TNCs might necessitate larger amounts of 
remote curb.  

This work has left many avenues for further research. The results from section 6.6.2 indicate that 
the model likely underestimates the needed remote curb. This, we believe, is due to the two-stage 
nature of our model. Based on our work, we believe a three-stage model would yield better 
estimations of the needed remote curb infrastructure. However, our efforts to solve the three-
stage version of our model were unsuccessful. Thus, new mathematical representations and 
algorithms are needed so solve three-stage versions of this model. This is one possible avenue for 
future research. Another difficulty that we faced was representing many airport subsystems 
within the same model and capturing those systems behavior and interactions within an algebraic 
modeling framework like Pyomo. One example of this challenge was building surrogate models 
to represent road network congestion using SUMO simulation data in such a way that the 
surrogate models could embedded into a Pyomo model using algebraic equations. Research into 
this question alone would be valuable. Another example along these lines is how to represent 
parking lot occupancy levels well enough, algebraically, to determine in which hours parking 
might overflow. Errors in these estimates can result in errors in the prescribed expansion of 
parking. Thus, a possible area of future research is determining different ways that algebraic 
constraints can be used to better estimate the dynamics and state behavior in parking lots. A third 
example is how pricing influences on mode choice behavior can be captured in detail within an 
algebraic model. These challenges regarding embedding subsystem representations into an 
algebraic modeling framework so that power commercial branch and bound algorithms can be 
leveraged begs the question, “Is an algebraic modeling framework the correct framework to be 
investigating these airport infrastructure expansion questions?” It is likely that direct simulation 
or more advanced machine learning based surrogate models could better capture mode choice, 
parking, and traffic network behavior. This would come at the cost of having a less sophisticated 
optimization framework to leverage these simulations or advanced surrogate models, and the 
optimization framework used would likely lack optimality guarantees. Still research that explores 
the trade-off between the quality of the optimization framework and the quality of the surrogate 
model representation of sub-system behavior would be of value. 
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Appendix A. Two Stage Stochastic Model  
In this section, we present the mathematical model we have developed for carrying out the 
modeling approach described in this report. It is a scenario-based two stage model. We first 
present the sets, parameters, variables, and functions used in the model. We then break the 
variables up according to the stages they belong to. Finally, we present the objective function 
and the constraints according to the stages they belong to.  

Table A1: Sets, Parameters, and Variables 

Sets Description 

𝑌𝑌 Set of years within the planning horizon 

𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 Set of years construction can occur 

𝑇𝑇 Set of trajectories for future passenger growth as well as EV (or emissions 
reductions) and AV technology adoption 

𝐻𝐻 Set of hours used to represent airport conditions throughout the year 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 Set of site areas where delay or congestion is measured 

𝐿𝐿𝑅𝑅𝑅𝑅 Set of remote parking sites 

𝐿𝐿𝑋𝑋𝑅𝑅 Set of express parking sites 

𝐿𝐿𝑇𝑇𝑅𝑅 Set of terminal area parking sites 

𝐿𝐿𝑅𝑅 𝐿𝐿𝑅𝑅𝑅𝑅 ∪ 𝐿𝐿𝑋𝑋𝑅𝑅 ∪ 𝐿𝐿𝑇𝑇𝑅𝑅 

𝐿𝐿𝑆𝑆 Set of sites that shuttle passengers to the terminals, (e.g., remote curbs, remote 
parking, express parking) 

𝐿𝐿𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆 ⊆ 𝐿𝐿𝑆𝑆 Set of currently nonexistent sites that shuttle passengers to the terminals 

𝑁𝑁𝐷𝐷𝑆𝑆 
Set of shuttle routes for shuttle service site 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆, (we assume that the sets 
𝑁𝑁𝐷𝐷𝑆𝑆 form a partition of the routes used at the airport, hence no route serves two 
sites in 𝐿𝐿𝑆𝑆) 

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 ⊆ 𝐿𝐿𝑅𝑅 Set of potential parking construction sites 

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑆𝑆𝐷𝐷𝑆𝑆 ⊆ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 Set of potential parking construction sites that are currently nonexistent. 

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶  Set of potential remote curb construction sites 

𝐿𝐿𝐶𝐶𝐶𝐶 ⊆ 𝐿𝐿𝑅𝑅 Set of potential construction sites for converting parking to curb 

𝛱𝛱 

Set of potential final construction combinations specifying which currently-
nonexistent construction sites are built and the year those sites are initially 
constructed, e.g., a new parking site 𝑙𝑙∗ ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 is constructed at the first 
construction year and no new remote curb sites are constructed throughout the 
planning horizon. 

𝛱𝛱𝐷𝐷,𝐷𝐷𝑆𝑆  Set of potential final construction combinations where shuttle site 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 exists by 
year 𝑦𝑦 ∈ 𝑌𝑌 

𝑀𝑀 Set of mode choices for passengers to get to and from the airport, for modeling 
simplicity we make these mode choices location specific 

𝐴𝐴 Set of sets 𝐴𝐴(𝐶𝐶, ℎ) 

𝐴𝐴(𝐶𝐶, ℎ) Set of stochastic scenarios which describe different congestion price responses, 
and the resulting mode choice volumes and associated revenue. There exists one 
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of these scenario sets for each trajectory 𝐶𝐶 ∈ 𝑇𝑇, and hour ℎ ∈ 𝐻𝐻. Thus, it is a finite 
scenario based representation of a conditional distribution, which is conditioned 
on the respective hour, and trajectory 

𝑄𝑄𝑅𝑅𝑅𝑅 Set indexing the remote parking pricing options 

𝑄𝑄𝑇𝑇𝑅𝑅 Set indexing the terminal area parking pricing options 

𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Set indexing the congestion pricing options 

Scalar 
Parameters Description 

𝜃𝜃 Discount rate (year-based) for life cycle cost evaluation 

𝑝𝑝𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇  Penalty for total parking overflow across all parking sites 

𝜔𝜔 Weight of each hour scenario. Should always be 8760 

𝑟𝑟𝑆𝑆𝐶𝐶𝑆𝑆 The number of remote curb spots that require a new car lane for in and out 
flowing traffic 

𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆 The number of remote curb spots that require a new bus lane for shuttle service 

𝑟𝑟𝑆𝑆𝐶𝐶𝑅𝑅𝑅𝑅 The number of remote curb spots that require one cell phone parking spot 

𝜁𝜁𝑅𝑅𝐶𝐶  Increment in which remote curb must be built in a construction year 

𝜁𝜁𝑅𝑅 Increment in which parking must be built in a construction year 

𝜁𝜁𝐶𝐶𝑅𝑅𝑅𝑅 Increment in which cell phone parking must be built in a construction year 

𝜁𝜁𝐶𝐶𝐶𝐶  Increment in which parking spots must be converted to curb in a construction year 

𝜁𝜁𝐶𝐶𝑆𝑆 Increment in which car lanes must be built in a construction year 

𝜁𝜁𝑆𝑆𝑆𝑆 Increment in which bus lanes must be built in a construction year 

𝜁𝜁𝐶𝐶𝐶𝐶𝐶𝐶  Increment in which electric bus chargers must be installed in a construction year 

𝜁𝜁𝑆𝑆 Increment in which electric buses must be purchased in a construction year 

𝑟𝑟𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 Ratio determining the number of chargers needed to serve a certain number of 
electric buses 

𝑟𝑟𝑆𝑆𝑇𝑇 Ratio of total bus fleet with active fleet needed to ensure the active fleet is 
possible given charging constraints 

𝑟𝑟𝐶𝐶𝐶𝐶 The number of parking spots needed to create a new converted pickup/drop-off 
spot 

Set Dependent 
Parameters Description 

𝑝𝑝𝐷𝐷𝑅𝑅𝑇𝑇𝑇𝑇  Penalty for parking overflow at parking site 𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅 

𝑝𝑝𝐶𝐶𝑆𝑆𝑇𝑇𝑇𝑇−𝐼𝐼𝑆𝑆 Penalty for leaving people behind waiting for a shuttle going to a terminal for 
shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 

𝑝𝑝𝐶𝐶𝑆𝑆𝑇𝑇𝑇𝑇−𝑇𝑇𝑂𝑂𝑇𝑇 Penalty for leaving people behind waiting for a shuttle to leave a terminal for 
shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 

𝑧𝑧𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶 Max number of spots allowed to be converted from parking to pickup/drop-off 
spots at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶 

𝑐𝑐𝐷𝐷,𝐷𝐷𝑅𝑅  Construction cost per parking spot at 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 and 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 
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𝑐𝑐𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶 Construction cost per remote curb spot at 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶  and 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑐𝑐𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶 Construction cost to convert parking to pickup/drop-off area at 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶 and 𝑦𝑦 ∈
𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑐𝑐𝐷𝐷,𝐷𝐷𝑆𝑆  Construction cost per lane of connecting road at remote curb site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 and 
𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑐𝑐𝐷𝐷,𝐷𝐷𝑆𝑆  Purchase cost of an electric bus for 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 ∪ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 and 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑐𝑐𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶 Cost of an electric bus charger for 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 ∪ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 and 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑐𝑐𝐷𝐷𝑅𝑅𝐷𝐷𝑡𝑡𝑖𝑖𝐶𝐶 Cost reduction ratio to scale the cost based on the limited modeled benefit 
captured in the optimization horizon 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑧𝑧𝜋𝜋,𝐷𝐷,𝐷𝐷
𝑅𝑅𝑃𝑃𝑖𝑖𝐶𝐶 

The minimum number of parking spots required at site 𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅 in year 𝑦𝑦 ∈ 𝑌𝑌 
considering the final construction combination of currently nonexistent 
construction sites is 𝜋𝜋 ∈ 𝛱𝛱 

𝑧𝑧𝜋𝜋,𝐷𝐷,𝐷𝐷
𝑅𝑅𝐶𝐶𝑃𝑃𝑖𝑖𝐶𝐶 

The minimum number of remote curb spots required at site 𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅 in year 𝑦𝑦 ∈ 𝑌𝑌 
considering the final construction combination of currently nonexistent 
construction sites is 𝜋𝜋 ∈ 𝛱𝛱 

𝑧𝑧𝐷𝐷𝑅𝑅0 Number of parking spots available initially at site 𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅 

𝑧𝑧𝐷𝐷𝑅𝑅𝐶𝐶0 Number of remote curb spots available initially at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 

𝑧𝑧𝐷𝐷𝐶𝐶𝐶𝐶0 Number of pickup and drop-off spots available initially at parking to curb 
conversion site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶 

𝑧𝑧𝐶𝐶,𝐷𝐷
𝑆𝑆0 Number of shuttle buses available for shuttling passengers for shuttle route 

𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 

𝐶𝐶𝐶𝐶,𝐷𝐷,𝐷𝐷,ℎ
𝑃𝑃𝑖𝑖𝐶𝐶  Lower bound on number of shuttle buses in service in year 𝑦𝑦 ∈ 𝑌𝑌, hour ℎ ∈ 𝐻𝐻 for 

shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆  

𝐶𝐶𝐶𝐶,𝐷𝐷
𝐶𝐶𝐷𝐷𝐶𝐶 Capacity for shuttle bus serving route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 

𝑐𝑐𝐷𝐷,𝐷𝐷𝑇𝑇𝑅𝑅𝐶𝐶  Hourly remote curb operation cost per remote curb spots in year 𝑦𝑦 ∈ 𝑌𝑌 for site 𝑙𝑙 ∈
𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶  

𝑐𝑐𝐶𝐶,𝐷𝐷,𝐷𝐷
𝑇𝑇𝑆𝑆  Hourly shuttle bus operation cost per bus in year 𝑦𝑦 ∈ 𝑌𝑌 for shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, 

where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 

𝑓𝑓𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆  The number of loops per hour a bus makes servicing shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 

𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆, year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝑣𝑣𝜋𝜋,𝐶𝐶,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠,𝑖𝑖,𝑖𝑖,𝑘𝑘
𝑅𝑅𝐷𝐷𝑃𝑃  

Volume parameter for mode 𝑇𝑇 ∈ 𝑀𝑀, year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and 
scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) given remote parking, terminal parking, and congestion 
pricing options 𝑇𝑇, 𝑗𝑗, 𝑘𝑘 respectively, and considering the final construction 
combination of currently nonexistent construction sites to be 𝜋𝜋 ∈ 𝛱𝛱 

𝑣𝑣𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑇𝑇𝐶𝐶𝑡𝑡𝑅𝑅𝐷𝐷𝑃𝑃 Total volume parameter for year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 

𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝑇𝑇𝜋𝜋,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠,𝑖𝑖,𝑖𝑖,𝑘𝑘
𝑅𝑅𝐷𝐷𝑃𝑃  

Revenue for year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 
given remote parking, terminal parking, and congestion pricing options 𝑇𝑇, 𝑗𝑗, 𝑘𝑘 
respectively, and considering the final construction combination of currently 
nonexistent construction sites to be 𝜋𝜋 ∈ 𝛱𝛱 

𝑐𝑐𝐷𝐷𝐶𝐶𝑇𝑇𝑇𝑇 Peoples’ value of time using the airport for year 𝑦𝑦 ∈ 𝑌𝑌 
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𝑎𝑎𝐷𝐷
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 Average delay allowed at congestion site 𝑙𝑙 ∈ 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕,𝒉𝒉,𝒔𝒔 The probability of scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) for trajectory 𝐶𝐶 ∈ 𝑇𝑇 and hour ℎ ∈ 𝐻𝐻 

𝝉𝝉𝒊𝒊𝑹𝑹𝑷𝑷𝑷𝑷𝑹𝑹𝑷𝑷 Remote parking price option 𝑇𝑇 for 𝑇𝑇 ∈ 𝑄𝑄𝑅𝑅𝑅𝑅 

 𝝉𝝉𝒋𝒋𝑻𝑻𝑷𝑷𝑷𝑷𝑹𝑹𝑷𝑷 Terminal area parking price option 𝑗𝑗 for 𝑗𝑗 ∈ 𝑄𝑄𝑇𝑇𝑅𝑅 

𝝉𝝉𝒌𝒌
𝑪𝑪𝑷𝑷𝑪𝑪𝑪𝑪𝑷𝑷𝑹𝑹𝑷𝑷 Congestion price option 𝑘𝑘 for 𝑘𝑘 ∈ 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

First Stage 
Variables Description 

𝜓𝜓𝜋𝜋 Binary variable representing whether 𝜋𝜋 ∈ 𝛱𝛱 is the final construction combination 
of currently nonexistent construction sites 

𝝍𝝍 A vector of {⋯ ,𝜓𝜓𝜋𝜋 ,⋯ } 

𝑥𝑥𝐷𝐷,𝐷𝐷𝑅𝑅  Integer variable representing the number of parking spot increments built at site 
𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 in construction year 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑥𝑥𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶 Integer variable representing the number of remote curb spot increments built at 
site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶  in construction year 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶 Integer variable representing the number of increments of pickup and drop-off 
parking conversions at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶  in construction year 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝑆𝑆 
Integer variable representing the number of car lanes built at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 in 
construction year 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑥𝑥𝐷𝐷,𝐷𝐷𝑆𝑆𝑆𝑆 
Integer variable representing the number of bus lanes built at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶  in 
construction year 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝑅𝑅𝑅𝑅 Integer variable representing the number of cell phone parking spots built at site 
𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 in construction year 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑥𝑥𝐶𝐶,𝐷𝐷,𝐷𝐷
𝑆𝑆  Integer variable representing the number of electric buses purchased for 

supporting shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 ∪ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 in construction year 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶 Integer variable representing the number of electric buses chargers installed for 
supporting shuttle at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 ∪ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 in construction year 𝑦𝑦 ∈ 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 

𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅  Integer variable representing the cumulative number of parking spots added at 
site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 in year 𝑦𝑦 ∈ 𝑌𝑌 

𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶 Integer variable representing the cumulative number of remote curb spots added 
at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 in year 𝑦𝑦 ∈ 𝑌𝑌 

𝑧𝑧𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶 Integer variable representing the cumulative number of pickup and drop-off 
parking converted spots added at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶 in year 𝑦𝑦 ∈ 𝑌𝑌 

𝑧𝑧𝐷𝐷,𝐷𝐷𝐶𝐶𝑆𝑆 Integer variable representing the cumulative number of car lanes added at site 𝑙𝑙 ∈
𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶  in year 𝑦𝑦 ∈ 𝑌𝑌 

𝑧𝑧𝐷𝐷,𝐷𝐷𝑆𝑆𝑆𝑆 Integer variable representing the cumulative number of bus lanes added at site 
𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 in year 𝑦𝑦 ∈ 𝑌𝑌 

𝑧𝑧𝐷𝐷,𝐷𝐷𝐶𝐶𝑅𝑅𝑅𝑅 Integer variable representing the cumulative number of cell phone parking spots 
added at site 𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 in year 𝑦𝑦 ∈ 𝑌𝑌 

𝑧𝑧𝐶𝐶,𝐷𝐷,𝐷𝐷
𝑆𝑆  Integer variable representing the cumulative number of buses added for 

supporting shuttling for shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 in year 𝑦𝑦 ∈ 𝑌𝑌 
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𝑧𝑧𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶 Integer variable representing the cumulative number of electric buses chargers 
added for supporting shuttling at site 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 in year 𝑦𝑦 ∈ 𝑌𝑌 

Second Stage 
Variables Description 

𝜔𝜔𝜋𝜋,𝐷𝐷,𝑡𝑡,ℎ,𝑖𝑖,𝑖𝑖,𝑘𝑘,𝑠𝑠 

Binary variable that corresponds to choosing remote parking pricing option 𝑇𝑇, 
terminal area parking pricing option 𝑗𝑗, congestion pricing option 𝑘𝑘 in year 𝑦𝑦 ∈ 𝑌𝑌, 
trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ), with 𝑇𝑇 ∈ 𝑄𝑄𝑅𝑅𝑅𝑅, 𝑗𝑗 ∈ 𝑄𝑄𝑇𝑇𝑅𝑅, 𝑘𝑘 ∈
𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 considering the final construction combination of currently nonexistent 
construction sites 𝜋𝜋 ∈ 𝛱𝛱 

𝜔𝜔𝐷𝐷,𝑡𝑡,ℎ,𝑖𝑖,𝑠𝑠
𝑅𝑅𝑅𝑅  Binary variable that corresponds to choosing remote parking pricing option 𝑇𝑇 in 

year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ), with 𝑇𝑇 ∈ 𝑄𝑄𝑅𝑅𝑅𝑅 

𝜔𝜔𝐷𝐷,𝑡𝑡,ℎ,𝑖𝑖,𝑠𝑠
𝑇𝑇𝑅𝑅  Binary variable that corresponds to choosing terminal area parking pricing option 

𝑗𝑗 in year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ), with 𝑗𝑗 ∈ 𝑄𝑄𝑇𝑇𝑅𝑅 

𝜔𝜔𝐷𝐷,𝑡𝑡,ℎ,𝑘𝑘,𝑠𝑠
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  Binary variable that corresponds to choosing congestion pricing option 𝑘𝑘 in year 

𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ), with 𝑘𝑘 ∈ 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

𝜏𝜏𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑅𝑅𝑅𝑅𝐶𝐶𝐷𝐷𝑃𝑃  Continuous variable representing the chosen remote parking price in year 𝑦𝑦 ∈ 𝑌𝑌, 

trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝜏𝜏𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑇𝑇𝑅𝑅𝐶𝐶𝐷𝐷𝑃𝑃 Continuous variable representing the chosen terminal area parking price in year 

𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝜏𝜏𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃  Continuous variable representing the chosen congestion price in year 𝑦𝑦 ∈ 𝑌𝑌, 

trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝜎𝜎𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆  Integer variable that determines the number of buses in service for route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, 

where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆, in year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝑇𝑇𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃  Continuous variable representing the revenue earned in year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈

𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝑣𝑣𝐶𝐶,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃  Continuous variable representing the mode choice volume for mode 𝑇𝑇 ∈ 𝑀𝑀, year 

𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃  A vector of �⋯ , 𝑣𝑣𝐶𝐶,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃 ,⋯� 

𝑢𝑢𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑅𝑅𝑇𝑇𝐶𝐶𝑡𝑡  Continuous slack variable representing total airport parking over-flow in year 𝑦𝑦 ∈

𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑅𝑅  Continuous slack variable representing airport parking over-flow at site 𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅, in 

year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝑢𝑢𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆−𝐼𝐼𝑆𝑆  

Continuous slack variable representing shuttle over-flow for shuttle going to the 
terminal on shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆, in year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour 
ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝑢𝑢𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆−𝑇𝑇𝑂𝑂𝑇𝑇  

Continuous slack variable representing shuttle over-flow for shuttle leaving the 
terminal on shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆 at site 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆, in year 𝑦𝑦 ∈ 𝑌𝑌, 
trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  Continuous slack variable representing excess congestion levels at site 𝑙𝑙 ∈ 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 

in year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

Functions Description 

𝐹𝐹𝐷𝐷,𝐷𝐷,𝑡𝑡
𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 Function that measures carbon emissions costs. It takes 𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃  as an argument at 
location 𝑙𝑙 ∈ 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇 
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𝐹𝐹𝐷𝐷,𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 Function that measures average delay. It takes 𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃  as an argument at location 
𝑙𝑙 ∈ 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, trajectory 𝐶𝐶 ∈ 𝑇𝑇 

𝐹𝐹𝐷𝐷𝑅𝑅𝐶𝐶 
Linear function that takes 𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃  as an argument and computes the parking 
volume at site 𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅 in year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈
𝐴𝐴(𝐶𝐶, ℎ) 

𝐹𝐹𝐶𝐶,𝐷𝐷
𝑆𝑆𝐶𝐶−𝐼𝐼𝑆𝑆 

Linear function that takes 𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃  as an argument and computes the shuttle 

passenger volume going to the terminal for shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆, in 
year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝐹𝐹𝐶𝐶,𝐷𝐷
𝑆𝑆𝐶𝐶−𝑇𝑇𝑂𝑂𝑇𝑇 

Linear function that takes 𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃  as an argument and computes the shuttle 

passenger volume leaving the terminal for shuttle route 𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆, where 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆, in 
year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝐹𝐹𝑅𝑅𝑇𝑇𝐶𝐶𝑡𝑡 
Linear function that takes 𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃  as an argument and computes the total parking 
volume across all sites in year 𝑦𝑦 ∈ 𝑌𝑌, trajectory 𝐶𝐶 ∈ 𝑇𝑇, hour ℎ ∈ 𝐻𝐻, and scenario 
𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) 

𝐹𝐹𝐷𝐷𝜏𝜏𝑃𝑃𝐷𝐷𝐶𝐶𝑅𝑅𝑅𝑅 Linear function that takes 𝝍𝝍 as an argument and computes the upper bound for 
remote parking price in year 𝑦𝑦 ∈ 𝑌𝑌 

𝐹𝐹𝐷𝐷𝜏𝜏𝑃𝑃𝐷𝐷𝐶𝐶𝑇𝑇𝑅𝑅 Linear function that takes 𝝍𝝍 as an argument and computes the upper bound for 
terminal parking price in year 𝑦𝑦 ∈ 𝑌𝑌 

𝐹𝐹𝐷𝐷
𝜏𝜏𝑃𝑃𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Linear function that takes 𝝍𝝍 as an argument and computes the upper bound for 

congestion price in year 𝑦𝑦 ∈ 𝑌𝑌 
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Objective Function (sample average expected value):  

minimize �
1

(1 + 𝜃𝜃)𝐷𝐷−1 𝑐𝑐𝐷𝐷
𝑅𝑅𝐷𝐷𝑡𝑡𝑖𝑖𝐶𝐶 � � 𝑐𝑐𝐷𝐷,𝐷𝐷𝑅𝑅 𝜁𝜁𝑅𝑅𝑥𝑥𝐷𝐷,𝐷𝐷𝑅𝑅

𝐷𝐷∈𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷∈𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶

+ � �𝑐𝑐𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶𝜁𝜁𝑅𝑅𝐶𝐶𝑥𝑥𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶 + 𝑐𝑐𝐷𝐷,𝐷𝐷𝑆𝑆 𝜁𝜁𝐶𝐶𝑆𝑆𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝑆𝑆 + 𝑐𝑐𝐷𝐷,𝐷𝐷𝑆𝑆 𝜁𝜁𝑆𝑆𝑆𝑆𝑥𝑥𝐷𝐷,𝐷𝐷𝑆𝑆𝑆𝑆 + 𝑐𝑐𝐷𝐷,𝐷𝐷𝑅𝑅 𝜁𝜁𝐶𝐶𝑅𝑅𝑅𝑅𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝑅𝑅𝑅𝑅�
𝐷𝐷∈𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ � 𝑐𝑐𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝜁𝜁𝐶𝐶𝐶𝐶𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶

𝐷𝐷∈𝑆𝑆𝐶𝐶𝐶𝐶
+ ��� �𝑐𝑐𝐷𝐷,𝐷𝐷𝑆𝑆 𝜁𝜁𝑆𝑆𝑥𝑥𝐶𝐶,𝐷𝐷,𝐷𝐷

𝑆𝑆 �
𝐶𝐶∈𝑆𝑆𝑙𝑙

𝑆𝑆

+ 𝑐𝑐𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝜁𝜁𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶�
𝐷𝐷∈𝑆𝑆𝑆𝑆

�

+ �
1

(1 + 𝜃𝜃)𝐷𝐷−1 ��� � 𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑡𝑡,ℎ,𝑠𝑠
𝑠𝑠∈𝑆𝑆(𝑡𝑡,ℎ)

�� � 𝑐𝑐𝐶𝐶,𝐷𝐷,𝐷𝐷
𝑇𝑇𝑆𝑆

𝐶𝐶∈𝑆𝑆𝑙𝑙
𝑆𝑆

𝜎𝜎𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆

𝐷𝐷∈𝑆𝑆𝑆𝑆 ℎ∈𝐻𝐻𝑡𝑡∈𝑇𝑇𝐷𝐷∈𝑌𝑌

+ � 𝑐𝑐𝐷𝐷,𝐷𝐷𝑇𝑇𝑅𝑅𝐶𝐶𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶

𝐷𝐷∈𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
− 𝑇𝑇𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃 + 𝑝𝑝𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑢𝑢𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑅𝑅𝑇𝑇𝐶𝐶𝑡𝑡 + �𝑝𝑝𝐷𝐷𝑅𝑅𝑇𝑇𝑇𝑇𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝑅𝑅

𝐷𝐷∈𝑆𝑆𝐶𝐶

+ � � �𝑝𝑝𝐶𝐶𝑆𝑆𝑇𝑇𝑇𝑇−𝐼𝐼𝑆𝑆𝑢𝑢𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,𝑑𝑑,ℎ,𝑠𝑠
𝑆𝑆−𝐼𝐼𝑆𝑆 + 𝑝𝑝𝐶𝐶𝑆𝑆𝑇𝑇𝑇𝑇−𝑇𝑇𝑂𝑂𝑇𝑇𝑢𝑢𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝑆𝑆−𝑇𝑇𝑂𝑂𝑇𝑇 �
𝐶𝐶∈𝑆𝑆𝑙𝑙

𝑆𝑆𝐷𝐷∈𝑆𝑆𝑆𝑆

+ � �𝐹𝐹𝐷𝐷,𝐷𝐷,𝑡𝑡
𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠�𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃 � + 𝑣𝑣𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑇𝑇𝐶𝐶𝑡𝑡𝑅𝑅𝐷𝐷𝑃𝑃𝑐𝑐𝐷𝐷𝐶𝐶𝑇𝑇𝑇𝑇𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �
𝐷𝐷∈𝑆𝑆𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷𝐷𝐷

�� 

 

(0) 

subject to 
First Stage Constraints:  

�𝜓𝜓𝜋𝜋
𝜋𝜋∈Π

= 1  (1) 

�𝑧𝑧𝜋𝜋,𝐷𝐷,𝐷𝐷
𝑅𝑅𝑃𝑃𝑖𝑖𝐶𝐶𝜓𝜓𝜋𝜋

𝜋𝜋∈Π

≤ 𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅  ∀𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑆𝑆𝐷𝐷𝑆𝑆,𝑦𝑦 ∈ 𝑌𝑌 (2) 

�𝑧𝑧𝜋𝜋,𝐷𝐷,𝐷𝐷
𝑅𝑅𝐶𝐶𝑃𝑃𝑖𝑖𝐶𝐶𝜓𝜓𝜋𝜋

𝜋𝜋∈Π

≤ 𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶 ∀𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 ,𝑦𝑦 ∈ 𝑌𝑌 (3) 

𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶 = � 𝜁𝜁𝑅𝑅𝐶𝐶𝑥𝑥𝐷𝐷,𝐷𝐷′
𝑅𝑅𝐶𝐶

𝐷𝐷′≤𝐷𝐷

 ∀𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 ,𝑦𝑦 ∈ 𝑌𝑌 (4) 

𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅 = � 𝜁𝜁𝑅𝑅𝑥𝑥𝐷𝐷,𝐷𝐷′
𝑅𝑅

𝐷𝐷′≤𝐷𝐷

 ∀𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅,𝑦𝑦 ∈ 𝑌𝑌 (5) 

𝑧𝑧𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶 = � 𝜁𝜁𝐶𝐶𝐶𝐶𝑥𝑥𝐷𝐷,𝐷𝐷′
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𝐹𝐹𝐷𝐷𝑅𝑅𝐶𝐶�𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃 � ≤ 𝑧𝑧𝐷𝐷𝑅𝑅0 − 𝑟𝑟𝐶𝐶𝐶𝐶𝑧𝑧𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶 + 𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝑅𝑅  ∀𝑙𝑙 ∈ 𝐿𝐿𝐶𝐶𝐶𝐶 ,𝑦𝑦 ∈ 𝑌𝑌, 𝐶𝐶 ∈ 𝑇𝑇,ℎ ∈ 𝐻𝐻, 𝐶𝐶
∈ 𝐴𝐴(𝐶𝐶, ℎ) (32) 

𝐹𝐹𝐷𝐷𝑅𝑅𝐶𝐶�𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃 � ≤ 𝑧𝑧𝐷𝐷𝑅𝑅0 + 𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝑅𝑅  ∀𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅\(𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 ∪ 𝐿𝐿𝐶𝐶𝐶𝐶),𝑦𝑦 ∈ 𝑌𝑌, 𝐶𝐶
∈ 𝑇𝑇,ℎ ∈ 𝐻𝐻, 𝐶𝐶
∈ 𝐴𝐴(𝐶𝐶, ℎ) 

(33) 

𝐹𝐹𝑅𝑅𝑇𝑇𝐶𝐶𝑡𝑡�𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃 � ≤ � �𝑧𝑧𝐷𝐷𝑅𝑅0 + 𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅 �

𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ ��𝑧𝑧𝐷𝐷𝑅𝑅0 − 𝑟𝑟𝐶𝐶𝐶𝐶𝑧𝑧𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶�
𝑆𝑆𝐶𝐶𝐶𝐶

+ � 𝑧𝑧𝐷𝐷𝑅𝑅0

𝐷𝐷∈𝑆𝑆𝐶𝐶\�𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶∪𝑆𝑆𝐶𝐶𝐶𝐶�

+ 𝑢𝑢𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑅𝑅𝑇𝑇𝐶𝐶𝑡𝑡  

∀𝑦𝑦 ∈ 𝑌𝑌, 𝐶𝐶 ∈ 𝑇𝑇,ℎ ∈ 𝐻𝐻, 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶,ℎ) (34) 

𝐹𝐹𝐶𝐶,𝐷𝐷
𝑆𝑆𝐶𝐶−𝐼𝐼𝑆𝑆�𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃 �
≤ 𝐶𝐶𝐶𝐶,𝐷𝐷

𝐶𝐶𝐷𝐷𝐶𝐶𝑓𝑓𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆 𝜎𝜎𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝑆𝑆

+ 𝑢𝑢𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,𝑑𝑑,ℎ,𝑠𝑠
𝑆𝑆−𝐼𝐼𝑆𝑆  

∀𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆 , 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆,𝑦𝑦 ∈ 𝑌𝑌, 𝐶𝐶 ∈ 𝑇𝑇,ℎ
∈ 𝐻𝐻, 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) (35) 

𝐹𝐹𝐶𝐶,𝐷𝐷
𝑆𝑆𝐶𝐶−𝑇𝑇𝑂𝑂𝑇𝑇�𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃 �
≤ 𝐶𝐶𝐶𝐶,𝐷𝐷

𝐶𝐶𝐷𝐷𝐶𝐶𝑓𝑓𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆 𝜎𝜎𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝑆𝑆

+ 𝑢𝑢𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆−𝑇𝑇𝑂𝑂𝑇𝑇  

∀𝑛𝑛 ∈ 𝑁𝑁𝐷𝐷𝑆𝑆 , 𝑙𝑙 ∈ 𝐿𝐿𝑆𝑆,𝑦𝑦 ∈ 𝑌𝑌, 𝐶𝐶 ∈ 𝑇𝑇,ℎ
∈ 𝐻𝐻, 𝐶𝐶 ∈ 𝐴𝐴(𝐶𝐶, ℎ) (36) 

𝐹𝐹𝐷𝐷,𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃 � ≤ 𝑎𝑎𝐷𝐷
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  ∀𝑙𝑙 ∈ 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶 ∈ 𝑇𝑇,ℎ ∈ 𝐻𝐻, 𝐶𝐶
∈ 𝐴𝐴(𝐶𝐶, ℎ) (37) 

The objective function (0) seeks to minimize the total expected system cost, which consists of 
infrastructure investment over the planning horizon, i.e., ∑ 1

(1+𝜃𝜃)𝐷𝐷−1 �∑ 𝑐𝑐𝐷𝐷,𝐷𝐷𝑅𝑅 𝜁𝜁𝑅𝑅𝑥𝑥𝐷𝐷,𝐷𝐷𝑅𝑅𝐷𝐷∈𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +𝐷𝐷∈𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶

∑ �𝑐𝑐𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶𝜁𝜁𝑅𝑅𝐶𝐶𝑥𝑥𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶 + 𝑐𝑐𝐷𝐷,𝐷𝐷𝑆𝑆 𝜁𝜁𝐶𝐶𝑆𝑆𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝑆𝑆 + 𝑐𝑐𝐷𝐷,𝐷𝐷𝑆𝑆 𝜁𝜁𝑆𝑆𝑆𝑆𝑥𝑥𝐷𝐷,𝐷𝐷𝑆𝑆𝑆𝑆 + 𝑐𝑐𝐷𝐷,𝐷𝐷𝑅𝑅 𝜁𝜁𝐶𝐶𝑅𝑅𝑅𝑅𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝑅𝑅𝑅𝑅�𝐷𝐷∈𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + ∑ 𝑐𝑐𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝜁𝜁𝐶𝐶𝐶𝐶𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷∈𝑆𝑆𝐶𝐶𝐶𝐶 +
∑ �∑ �𝑐𝑐𝐷𝐷,𝐷𝐷𝑆𝑆 𝜁𝜁𝑆𝑆𝑥𝑥𝐶𝐶,𝐷𝐷,𝐷𝐷

𝑆𝑆 �𝐶𝐶∈𝑆𝑆𝑙𝑙
𝑆𝑆 + 𝑐𝑐𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝜁𝜁𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝐷𝐷,𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶�𝐷𝐷∈𝑆𝑆𝑆𝑆 �, plus the expected value over the planning 

horizon of shuttle operation cost 
∑ 1

(1+𝜃𝜃)𝐷𝐷−1
∑ ∑ ∑ 𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑡𝑡,ℎ,𝑠𝑠𝑠𝑠∈𝑆𝑆(𝑡𝑡,ℎ) ∑ ∑ 𝑐𝑐𝐶𝐶,𝐷𝐷,𝐷𝐷

𝑇𝑇𝑆𝑆
𝐶𝐶∈𝑆𝑆𝑙𝑙

𝑆𝑆 𝜎𝜎𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆

𝐷𝐷∈𝑆𝑆𝑆𝑆 ℎ∈𝐻𝐻𝑡𝑡∈𝑇𝑇𝐷𝐷∈𝑌𝑌 , remote curb operation 

cost ∑ 1
(1+𝜃𝜃)𝐷𝐷−1

∑ ∑ ∑ 𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑡𝑡,ℎ,𝑠𝑠𝑠𝑠∈𝑆𝑆(𝑡𝑡,ℎ) ∑ 𝑐𝑐𝐷𝐷,𝐷𝐷𝑇𝑇𝑅𝑅𝐶𝐶𝑧𝑧𝐷𝐷,𝐷𝐷𝑅𝑅𝐶𝐶𝐷𝐷∈𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ℎ∈𝐻𝐻𝑡𝑡∈𝑇𝑇𝐷𝐷∈𝑌𝑌 , negative revenue 

∑ 1
(1+𝜃𝜃)𝐷𝐷−1

∑ ∑ ∑ 𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑡𝑡,ℎ,𝑠𝑠𝑠𝑠∈𝑆𝑆(𝑡𝑡,ℎ) �−𝑇𝑇𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝐶𝐶𝐷𝐷𝑃𝑃 � ℎ∈𝐻𝐻𝑡𝑡∈𝑇𝑇𝐷𝐷∈𝑌𝑌 , parking overflow penalty 

∑ 1
(1+𝜃𝜃)𝐷𝐷−1

∑ ∑ ∑ 𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑡𝑡,ℎ,𝑠𝑠𝑠𝑠∈𝑆𝑆(𝑡𝑡,ℎ) �𝑝𝑝𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑢𝑢𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑅𝑅𝑇𝑇𝐶𝐶𝑡𝑡 + ∑ 𝑝𝑝𝐷𝐷𝑅𝑅𝑇𝑇𝑇𝑇𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝑅𝑅
𝐷𝐷∈𝑆𝑆𝐶𝐶 � ℎ∈𝐻𝐻𝑡𝑡∈𝑇𝑇𝐷𝐷∈𝑌𝑌 , shuttle 

overflow penalty ∑ 1
(1+𝜃𝜃)𝐷𝐷−1

∑ ∑ ∑ 𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑡𝑡,ℎ,𝑠𝑠𝑠𝑠∈𝑆𝑆(𝑡𝑡,ℎ) ∑ ∑ �𝑝𝑝𝐶𝐶𝑆𝑆𝑇𝑇𝑇𝑇−𝐼𝐼𝑆𝑆𝑢𝑢𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,𝑑𝑑,ℎ,𝑠𝑠
𝑆𝑆−𝐼𝐼𝑆𝑆 +𝐶𝐶∈𝑆𝑆𝑙𝑙

𝑆𝑆𝐷𝐷∈𝑆𝑆𝑆𝑆 ℎ∈𝐻𝐻𝑡𝑡∈𝑇𝑇𝐷𝐷∈𝑌𝑌

𝑝𝑝𝐶𝐶𝑆𝑆𝑇𝑇𝑇𝑇−𝑇𝑇𝑂𝑂𝑇𝑇𝑢𝑢𝐶𝐶,𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑆𝑆−𝑇𝑇𝑂𝑂𝑇𝑇 �, as well as emission and congestion cost 

∑ 1
(1+𝜃𝜃)𝐷𝐷−1

∑ ∑ ∑ 𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑡𝑡,ℎ,𝑠𝑠𝑠𝑠∈𝑆𝑆(𝑡𝑡,ℎ) ∑ �𝐹𝐹𝐷𝐷,𝐷𝐷,𝑡𝑡
𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠�𝒗𝒗𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐷𝐷𝑃𝑃 � + 𝑣𝑣𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠
𝑇𝑇𝐶𝐶𝑡𝑡𝑅𝑅𝐷𝐷𝑃𝑃𝑐𝑐𝐷𝐷𝐶𝐶𝑇𝑇𝑇𝑇𝑢𝑢𝐷𝐷,𝐷𝐷,𝑡𝑡,ℎ,𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝐷𝐷∈𝑆𝑆𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷𝐷𝐷 ℎ∈𝐻𝐻𝑡𝑡∈𝑇𝑇𝐷𝐷∈𝑌𝑌 .  
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Constraints (1)-(16) are first stage constraints while constraints (17)-(37) are second stage. 
Constraint (1) ensures that the model will choose one and only one final construction 
combination for currently nonexistent construction sites from the set 𝛱𝛱. Constraints (2) and (3) 
respectively specify the lower bound for constructed parking spots and remote curb spots at 
potential construction sites. Constraints (4)-(11) respectively track the accumulative number of 
newly added remote curb spots, parking spots, curbs spots converted from terminal parking 
spots, cell phone parking spots, car lanes, bus lanes, electric buses, and electric bus chargers. 
Constraints (12)-(14) ensure that enough car lanes, bus lanes, and cellphone parking spots are 
added to support newly constructed remote curb spots. Constraint (15) ensures that enough 
electric bus chargers are deployed to support electric buses. Constraint (16) specifies the upper 
bound for curb spots converted from terminal parking spots. Constraint (17) specifies the 
minimum number of shuttle buses in service for each shuttle route. Constraint (18) ensures that 
the fleet size for each shuttle route is large enough to provide required shuttle service. 
Constraints (19)-(21) respectively specify the upper bounds for remote parking price, terminal 
parking price, and terminal congestion price. Constraints (22)-(30) ensure that only one group of 
values will be chosen for (remote parking price, terminal parking price, terminal congestion 
price) and the pricing values in combination with the final construction configuration for 
currently nonexistent construction sites will map to the right data point for passenger mode 
choice and airport revenue. Constraints (31)-(34) specify parking overflow penalty. Constraints 
(35)-(36) specify shuttle overflow penalty. Constraint (37) specifies congestion penalties. 
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Appendix B. Data Collection and Model Tuning  
The data required to construct meaningful instances of the models presented above span a wide 
range of fields. At a high level, it can be broken into three categories:  

1. data describing infrastructure characteristics and costs,  
2. data used to represent airport operations,  
3. and data describing long term and short-term uncertainties.  

To ensure the most accurate possible solutions, we have worked in collaboration with DFW 
officials to locate the best available data for the model. In cases where DFW cannot provide the 
needed data, we have leveraging public data sources, industry connections hosted by NREL and 
ORNL, internal expertise at NREL and ORNL, Athena models capable of producing simulated 
data from calibrated simulations, as well as existing models at NREL and ORNL. We have 
cataloged the data items that were needed and attempted to find the best sources possible for 
each. Below in Table B1, we summarize the data items.  

Table B1: Categorization of data to collect for future model runs.  

Data Type  Data Item  Description  Status  Sources  

Infrastructure Data  
  

Planning 
Horizon  

The number of years 
into the future the 
model prescribes 
infrastructure to be 
built  

Collected  DFW  

Infrastructure Data  
  

Infrastructure 
Investment 
Cycle  

How often the model 
allows new 
infrastructure to be 
built  

Collected  DFW  

Infrastructure Data  
  

Life of 
Infrastructure  

Data on when 
existing 
infrastructure should 
be retired in the 
planning horizon  

Collected  DFW  

Infrastructure Data  
  

Current Parking  Information on 
current parking 
quantities and where 
it is located  

Collected  DFW  

Infrastructure Data  
  

Remote Curb 
Sites  

Possible locations 
where remote curb 
could be built, and 
related space 
constraints  

Reasonable 
Estimates 
Made  

DFW in 
person visits  

Infrastructure Data  
  

Parking 
Conversion Sites  
  

Possible locations 
where existing 
parking can be 
converted to curb 
space  

Reasonable 
Estimates 
Made  

DFW in 
person visits  
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Infrastructure Data  
  

Cost of New 
Infrastructure  

Cost per new 
parking spot, 
converted parking 
spot, foot of remote 
curb, and EV shuttle 
charger  

Reasonable 
Estimates 
Made  

 Literature, 
Discussions 
with industry 
experts  

Infrastructure Data  
  

Infrastructure 
Specifications  

Length of parking 
spots, and curb drop 
off spots  

Collected  DFW and in 
person visits  

Infrastructure Data  
  

Infrastructure 
Investment 
Cycle Budgets  

The airport budget 
constraints for 
different types of 
infrastructure each 
investment cycle  

Not known  Assumed 
there were 
none  

Operational Data  
  

Cost of Shuttle 
Operations  

The cost of 
operating x buses 
for an hour, with AV 
and non AV 
considerations  

Collected  DFW  

Operational Data  
  

Travel Times  Estimated travel 
times for different 
origin and 
destination pairs on 
the DFW road 
network  

Collected  Athena 
Simulations 
and Bus 
logger data  

Operational Data  
  

Bus Operations 
Information  

Shuttle capacities 
and desired 
passenger 
pickup/drop-off 
frequencies  

Collected  DFW, Bus 
Optimization 
Work  

Operational Data  
  

Representative 
Times  

Set of times during 
the year to model to 
ensure we capture 
annual variations in 
operations  

Collected  DFW  

Operational Data  
  

Congestion 
Zones  

Set of road network 
areas to ensure we 
model congestion 
within the airport 
with sufficient detail  

Collected  DFW, Athena 
SUMO 
modeling 
work  

Operational Data  
  

Travel Modes  Set of passenger 
travel modes to and 
from the airport  

Collected  DFW, Mode 
Choice 
Modeling 
work  
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Operational Data  
  

Passenger 
Demographics  

Break down of 
passenger volume 
by local vs. visiting 
passengers, and 
arrivals vs. 
departure 
passengers  

Collected  DFW, Mode 
Choice 
Modeling 
work  

Operational Data  
  

Parking 
Occupancy  

Distributions of the 
occupancy levels of 
different parking 
products, so we can 
estimate available 
spaces  

Collected  DFW  

Operational Data Parking Pricing  Pricing data on the 
different parking 
services DFW 
provides  

Collected  DFW, Mode 
Choice 
Modeling 
work  

Long and Short Term 
Uncertainties  

Low 
Emissions/EV 
and AV Adoption  

Set of projections 
regarding how low 
emissions /EV and 
AV use may grow 
over the horizon 
being modeled  

Reasonable 
Estimates 
Made  

Literature, 
NREL 
transportation 
center 
modeling 
capabilities 
and expertise  

Long and Short Term 
Uncertainties  

Demand Growth  Set of projections 
estimating how 
passenger volumes 
might grow over the 
horizon being 
considered  

Collected  DFW  

Long and Short Term 
Uncertainties  

Mode Choice 
Volumes  

Estimates of how 
mode choices might 
evolve over the time 
horizon being 
considered, and 
distributions on how 
those percentages 
might vary from day 
to day  

Approximate
d the best we 
can give the 
data we have 
available  

DFW, Mode 
Choice 
Modeling 
work  
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Appendix C. Two Stage Stochastic Model 
Assumptions 
In our implementation of the model above, we have made certain assumptions. This has been 
done for two reasons. In some cases, it is done because we do not have data to justify a certain 
speciation of the model and some sort of assumption is needed. In other cases, it is done ensure 
computational tractability of the model. In particular, using progressive hedging, we can 
decompose our two-stage model by scenario as described in section 2, which makes the model 
scalable in its ability to be solved while considering a high number of scenarios. From the 
progressive hedging perspective our scenarios are an individual hour from a TSARO over all 21 
years. However, progressive hedging in general does not enable us to decompose the individual 
scenarios themselves, which means we still need to keep the solution of the individual scenario 
problems tractable. This leads to the need for us to make certain but reasonable simplifying 
assumptions. It is most natural to talk about these assumptions in terms of first stage 
infrastructure assumptions and second stage operational assumption. 

First Stage Assumptions (infrastructure assumptions): 
• The modeling horizon is from 2025 to 2045.  
• The years in which build decisions are implemented 2025, 2030, 2035, and 2040.  
• We assume that the five years gaps are sufficient for the implementation of the 

infrastructure planned to appear in 2025, 2030, 2035, and 2040.  
• In order to account for the fact that build decisions in 2030, 2035, and 2040 have a 

limited horizon to earn revenue within the modeled horizon we scale their infrastructure 
costs by the percentage of the horizon they have available to produce revenue.  

• We assume costs and wages increase proportionally to inflation, and thus assume 
constant costs and revenue in 2021 dollars. 

• Spots are converted to pickup/drop-off spots are in terminal parking lots and in equal 
amounts across the 5 lots.  

• We assume that building remote curb at site, converting parking spots to pick-up/ drop-
off areas, and building parking at site are done in discrete increments of 20,100 (20 spots 
in each lot) and 20 respectively.  

• We are not considering the 6th terminal that DFW is planning to build at some point in the 
future. This terminal could be included in the model with relative ease once more 
information is known about it, however adjusting the traffic congestion SUMO model 
and producing new congestion surrogate models with it included could be a substantial 
effort.  

• We are not considering the road network changes that DFW is planning in the next 
decade. At present insufficient information about these changes is known. Additionally, 
to include these changes a new SUMO model of the road network would need to be 
created and it would need to provide data for the construction of new terminal congestion 
surrogate models. Our hope is that congestion delays are similar in both road networks.  

• We assume the parking to be added is remote parking and is uncovered surface parking. 
It can either be at the north or south end of the airport, and we have assumed there is 
room to triple the existing parking capacity in those locations.  
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• We have assumed that the ratio of current remote parking spots to the size of the remote 
parking bus fleet informs the number of new buses needed to support a given number of 
new parking spots.  

• We assume new buses supporting the remote parking are EVs and those EVs have their 
own set of chargers.  

• We assume there is a remote curb at the north and south end of the airport. The travel 
times between the remote curbs and terminals are assumed to be similar the rental car 
center.  

• People are moved between the remote curb and the terminals by a new fleet of electric 
buses and supporting chargers, which must be purchased.  

• We assume each remote curb has location specific electric bus fleet and chargers.  
• We assume bus operational characteristics at the remote curbs are similar to those of the 

rental car center which we studied in detail during the early years of the Athena project. 
This also allows us to estimate the number of total buses needed to sustain a certain 
number of active buses. It also allows us to estimate the number of chargers needed to 
sustain a certain number of active electric buses.  

• We assume the same charger to bus ratio used for the rental car center is also valid for the 
remote parking EV buses.  

• We assume approximately 1 mile if new road per lane is required to connect the remote 
curb to the existing road network. 

• We assume there is a ratio of cell phone spots to remote curb spots that can be used to 
guide the number of additional staging cell phone parking spots needed. 

• We assume that a certain number of parking spots are needed to create a new pick-up/ 
drop-off spots, and so parking spots are not converted to pickup/drop spots at a 1:1 ratio. 

Second Stage Assumptions (operational assumptions): 
• We assume in the future the airport gains a clear understanding of how setting seasonal 

congestion and parking prices for weekend/weekday/on-peak/off-peak hours effects 
mode choices. Additionally, we assume they have good quality forecasts of demand at 
these times thorough out the year.  

• We assumed that prices could be raised gradually if an affordable option like the remote 
curb was provided. 

• We assume we can capture delay in the terminal area as a single function which takes in 
the volume of cars that hour and the existing converted parking spots to curb spaces in 
terminal parking as inputs, and outputs delay experienced on the DFW road network.  

• We assume we can capture remote curb delay at each remote curb as a function of 
number of spaces and the incoming volume, and outputs delay experienced at the remote 
curb.  

• We assume that delay can be translated into extra time in near idling behavior and that 
can be converted to extra tons in carbon emission due to delay.  

• We assume bus operational characteristics at the remote curbs are similar to those of the 
rental car center which we studied in detail during the early years of the Athena project.  

• We assume due to the connected nature of airport operations if one part of the airport 
network starts experiencing delays larger than a given threshold it propagates and delays 
most passengers’ experiences to some degree.  
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• We assume that if a certain parking lot overflows it wastes a half hour of people time and 
is penalized as such.  

• We assume that if a person is left behind by a shuttle, they get on a shuttle 15 minutes 
afterward and as a result delayed by 15 minutes. Thus, we penalize shuttle overflow by 
the average cost of 15 minutes of peoples’ time who use DFW.  

• We assume that if all parking lots overflow that those people miss their flights, and we 
penalize the overflow quantity by the average cost of a flight at DFW. 
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